Skip to main content
Log in

AOSpine subaxial cervical spine injury classification system

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

This project describes a morphology-based subaxial cervical spine traumatic injury classification system. Using the same approach as the thoracolumbar system, the goal was to develop a comprehensive yet simple classification system with high intra- and interobserver reliability to be used for clinical and research purposes.

Methods

A subaxial cervical spine injury classification system was developed using a consensus process among clinical experts. All investigators were required to successfully grade 10 cases to demonstrate comprehension of the system before grading 30 additional cases on two occasions, 1 month apart. Kappa coefficients (κ) were calculated for intraobserver and interobserver reliability.

Results

The classification system is based on three injury morphology types similar to the TL system: compression injuries (A), tension band injuries (B), and translational injuries (C), with additional descriptions for facet injuries, as well as patient-specific modifiers and neurologic status. Intraobserver and interobserver reliability was substantial for all injury subtypes (κ = 0.75 and 0.64, respectively).

Conclusions

The AOSpine subaxial cervical spine injury classification system demonstrated substantial reliability in this initial assessment, and could be a valuable tool for communication, patient care and for research purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Allen BL Jr, Ferguson RL, Lehmann TR, O’Brien RP (1982) A mechanistic classification of closed, indirect fractures and dislocations of the lower cervical spine. Spine 7:1–27

    Article  PubMed  Google Scholar 

  2. Harris JH Jr, Edeiken-Monroe B, Kopaniky DR (1986) A practical classification of acute cervical spine injuries. Orthop Clin North Am 17:15–30

    PubMed  Google Scholar 

  3. Holdsworth F (1970) Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am 52:1534–1551

    CAS  PubMed  Google Scholar 

  4. Aebi M, Nazarian S (1987) Classification of injuries of the cervical spine. Der Orthopade 16:27–36

    CAS  PubMed  Google Scholar 

  5. Blauth MKA, Mair G, Schmid R, Reinhold M, Rieger M (2007) Classification of injuries of the subaxial cervical spine. In: Aebi MAV, Webb JK (eds) AO spine manual: clinical applications. Thieme, Stuttgart, pp 21–38

    Google Scholar 

  6. Bohler L (1951) Die Technik der Knochenbruchbehandlung. Maudrich, Wien

    Google Scholar 

  7. van Middendorp JJ, Audige L, Hanson B, Chapman JR, Hosman AJ (2010) What should an ideal spinal injury classification system consist of? A methodological review and conceptual proposal for future classifications. Euro Spine J Off Publ Eur Spine Soc Euro Spinal Deformity Soc Euro Sect Cerv Spine Res Soc 19:1238–1249. doi:10.1007/s00586-010-1415-9

    Article  Google Scholar 

  8. Vaccaro AR, Hulbert RJ, Patel AA, Fisher C, Dvorak M, Lehman RA, Anderson P, Harrop J, Oner FC, Arnold P, Fehlings M, Hedlund R, Madrazo I, Rechtine G, Aarabi B, Shainline M, Spine Trauma Study G (2007) The subaxial cervical spine injury classification system: a novel approach to recognize the importance of morphology, neurology, and integrity of the disco-ligamentous complex. Spine 32:2365–2374. doi:10.1097/BRS.0b013e3181557b92

    Article  PubMed  Google Scholar 

  9. Stone AT, Bransford RJ, Lee MJ, Vilela MD, Bellabarba C, Anderson PA, Agel J (2010) Reliability of classification systems for subaxial cervical injuries. Evidence-Based Spine-Care J 1:19–26. doi:10.1055/s-0030-1267064

    Article  Google Scholar 

  10. van Middendorp JJ, Audige L, Bartels RH, Bolger C, Deverall H, Dhoke P, Diekerhof CH, Govaert GA, Guimera V, Koller H, Morris SA, Setiobudi T, Hosman AJ (2013) The Subaxial Cervical Spine Injury Classification System: an external agreement validation study. Spine J Off J North Am Spine Soc. doi:10.1016/j.spinee.2013.02.040

    Google Scholar 

  11. Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, Reinhold M, Aarabi B, Kandziora F, Chapman J, Shanmuganathan R, Fehlings M, Vialle L, Injury AOSC, Trauma Knowledge F (2013) AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine 38:2028–2037. doi:10.1097/BRS.0b013e3182a8a381

    Article  PubMed  Google Scholar 

  12. Audige L, Bhandari M, Hanson B, Kellam J (2005) A concept for the validation of fracture classifications. J Orthop Trauma 19:401–406

    PubMed  Google Scholar 

  13. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  14. Spector LR, Kim DH, Affonso J, Albert TJ, Hilibrand AS, Vaccaro AR (2006) Use of computed tomography to predict failure of nonoperative treatment of unilateral facet fractures of the cervical spine. Spine 31:2827–2835. doi:10.1097/01.brs.0000245864.72372.8f

    Article  PubMed  Google Scholar 

  15. Vaccaro AR, Falatyn SP, Flanders AE, Balderston RA, Northrup BE, Cotler JM (1999) Magnetic resonance evaluation of the intervertebral disc, spinal ligaments, and spinal cord before and after closed traction reduction of cervical spine dislocations. Spine 24:1210–1217

    Article  CAS  PubMed  Google Scholar 

  16. Slongo T, Audige L, Clavert JM, Lutz N, Frick S, Hunter J (2007) The AO comprehensive classification of pediatric long-bone fractures: a web-based multicenter agreement study. J Pediatr Orthop 27:171–180. doi:10.1097/01.bpb.0000248569.43251.f9

    Article  PubMed  Google Scholar 

  17. Slongo T, Audige L, Schlickewei W, Clavert JM, Hunter J, International Association for Pediatric T (2006) Development and validation of the AO pediatric comprehensive classification of long bone fractures by the Pediatric Expert Group of the AO Foundation in collaboration with AO Clinical Investigation and Documentation and the International Association for Pediatric Traumatology. J Pediatr Orthop 26:43–49. doi:10.1097/01.bpo.0000187989.64021.ml

    Article  Google Scholar 

  18. Bailitz J, Starr F, Beecroft M, Bankoff J, Roberts R, Bokhari F, Joseph K, Wiley D, Dennis A, Gilkey S, Erickson P, Raksin P, Nagy K (2009) CT should replace three-view radiographs as the initial screening test in patients at high, moderate, and low risk for blunt cervical spine injury: a prospective comparison. J Trauma 66:1605–1609. doi:10.1097/TA.0b013e3181a5b0cc

    Article  PubMed  Google Scholar 

  19. LeBlang SD, Nunez DB, Jr. (1999) Helical CT of cervical spine and soft tissue injuries of the neck. Radiologic clinics of North America 37:515-532, v-vi

  20. Vaccaro AR, Rihn JA, Saravanja D, Anderson DG, Hilibrand AS, Albert TJ, Fehlings MG, Morrison W, Flanders AE, France JC, Arnold P, Anderson PA, Friel B, Malfair D, Street J, Kwon B, Paquette S, Boyd M, Dvorak MF, Fisher C (2009) Injury of the posterior ligamentous complex of the thoracolumbar spine: a prospective evaluation of the diagnostic accuracy of magnetic resonance imaging. Spine 34:E841–E847. doi:10.1097/BRS.0b013e3181bd11be

    Article  PubMed  Google Scholar 

  21. Oner FC, Wood KB, Smith JS, Shaffrey CI (2010) Therapeutic decision making in thoracolumbar spine trauma. Spine 35:S235–S244. doi:10.1097/BRS.0b013e3181f32734

    Article  PubMed  Google Scholar 

  22. Nadeau M, McLachlin SD, Bailey SI, Gurr KR, Dunning CE, Bailey CS (2012) A biomechanical assessment of soft-tissue damage in the cervical spine following a unilateral facet injury. J Bone Joint Surg Am 94:e156. doi:10.2106/JBJS.K.00694

    Article  PubMed  Google Scholar 

  23. Rasoulinejad P, McLachlin SD, Bailey SI, Gurr KR, Bailey CS, Dunning CE (2012) The importance of the posterior osteoligamentous complex to subaxial cervical spine stability in relation to a unilateral facet injury. Spine J Off J North Am Spine Soc 12:590–595. doi:10.1016/j.spinee.2012.07.003

    Article  Google Scholar 

  24. Ivancic PC, Pearson AM, Tominaga Y, Simpson AK, Yue JJ, Panjabi MM (2007) Mechanism of cervical spinal cord injury during bilateral facet dislocation. Spine 32:2467–2473. doi:10.1097/BRS.0b013e3181573b67

    Article  PubMed  Google Scholar 

  25. Wilson JR, Vaccaro A, Harrop JS, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte EM, Lewis S, Rampersaud R, Okonkwo DO, Fehlings MG (2013) The impact of facet dislocation on clinical outcomes after cervical spinal cord injury: results of a multicenter North American prospective cohort study. Spine 38:97–103. doi:10.1097/BRS.0b013e31826e2b91

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

AOSpine is a clinical division of the AO Foundation—an independent medically guided not for profit organization. The AO has a strong financial independence thanks to the foundations endowment. The annual operating activities are financed through three pillars: Collaboration and support agreements with DePuy Synthes and other industrial partners, return on own financial assets and other third party income (e.g., participant fees, R&D projects, memberships). The AOSpine Knowledge Forums are pathology focused working groups acting on behalf of AOSpine in their domain of scientific expertise. Each forum consists of a steering committee of up to 10 international spine experts who meet biannually to discuss research, assess the best evidence for current practices, and formulate clinical trials to advance their field of spine expertise. Authors are compensated for their travel and accommodation costs. Study support is provided directly through AOSpine’s Research department and AO’s Clinical Investigation and Documentation unit. There are no other institutional subsidies, corporate affiliations or funding sources supporting this work unless clearly documented and disclosed.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander R. Vaccaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaccaro, A.R., Koerner, J.D., Radcliff, K.E. et al. AOSpine subaxial cervical spine injury classification system. Eur Spine J 25, 2173–2184 (2016). https://doi.org/10.1007/s00586-015-3831-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-3831-3

Keywords

Navigation