Skip to main content
Log in

Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Intervertebral discs exhibit time-dependent deformation (creep), which could influence the relation between applied stress and intradiscal pressure. This study investigates the effect of prolonged dynamic loading on intradiscal pressure, disc height and compressive stiffness, and examines their mutual relationships.

Methods

Fifteen caprine lumbar discs with 5 mm of vertebral bone on either side were compressed by 1 Hz sinusoidal load for 4.5 h. After preload, ‘High’ (130 ± 20 N) or ‘Low’ (50 ± 10 N) loads were alternated every half hour. Continuous intradiscal pressure measurement was performed with a pressure transducer needle.

Results

Each disc showed a linear relationship between axial compression and intradiscal pressure (R 2 > 0.91). The intercept of linear regression analysis declined over time, but the gradient remained constant. Disc height changes were correlated to intradiscal pressure changes (R 2 > 0.98): both decreased during High loading, and increased during Low loading. In contrast, compressive stiffness increased during High loading, and was inversely related to intradiscal pressure and disc height.

Conclusions

Intradiscal pressure is influenced by recent loading due to fluid flow. The correlations found in this study suggest that intradiscal pressure is important for disc height and axial compliance. These findings are relevant for mechanobiology studies, nucleus replacements, finite element models, and ex vivo organ culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. (2011) Spine: low back and neck pain. In: Jacobs JJ (ed) United States Bone and Joint Decade: The Burden of Musculoskeletal Diseases in the United States. American Academy of Orthopaedic Surgeons, Rosemont, pp 21–56  

  2. Lambeek LC, van Tulder MW, Swinkels ICS et al (2011) The trend in total cost of back pain in The Netherlands in the period 2002 to 2007. Spine (Phila Pa 1976) 36:1050–1058. doi:10.1097/BRS.0b013e3181e70488

    Article  Google Scholar 

  3. Murray CJL, Vos T, Lozano R et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223. doi:10.1016/S0140-6736(12)61689-4

    Article  PubMed  Google Scholar 

  4. Cheung KMC, Karppinen J, Chan D et al (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 34:934–940. doi:10.1097/BRS.0b013e3181a01b3f

    Article  Google Scholar 

  5. Wang Y, Videman T, Battié MC (2012) ISSLS prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine (Phila Pa 1976) 37:1490–1496. doi:10.1097/BRS.0b013e3182608ac4

    Article  Google Scholar 

  6. Roy TC, Lopez HP, Piva SR (2013) Loads worn by soldiers predict episodes of low back pain during deployment to Afghanistan. Spine (Phila Pa 1976) 38:1310–1317. doi:10.1097/BRS.0b013e31829265c4

    Article  Google Scholar 

  7. Paul CPL, Schoorl T, Zuiderbaan HA et al (2013) Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs. PLoS One 8:e62411. doi:10.1371/journal.pone.0062411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Paul CPL, Zuiderbaan HA, Zandieh Doulabi B et al (2012) Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture. PLoS One 7:e33147. doi:10.1371/journal.pone.0033147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Wolff J (1892) Das Gesetz der transformation der Knochen. August Hirschwald, Berlin

    Google Scholar 

  10. Chan SCW, Ferguson SJ, Gantenbein-Ritter B (2011) The effects of dynamic loading on the intervertebral disc. Eur Spine J 20:1796–1812. doi:10.1007/s00586-011-1827-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hsieh AH, Twomey JD (2010) Cellular mechanobiology of the intervertebral disc: new directions and approaches. J Biomech 43:137–145. doi:10.1016/j.jbiomech.2009.09.019

    Article  PubMed  PubMed Central  Google Scholar 

  12. Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol 28:384–389. doi:10.1016/j.matbio.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  13. Wang D-L, Jiang S-D, Dai L-Y (2007) Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine (Phila Pa 1976) 32:2521–2528. doi:10.1097/BRS.0b013e318158cb61

    Article  Google Scholar 

  14. Haglund L, Moir J, Beckman L et al (2011) Development of a bioreactor for axially loaded intervertebral disc organ culture. Tissue Eng Part C Methods 17:1011–1019. doi:10.1089/ten.TEC.2011.0025

    Article  PubMed  CAS  Google Scholar 

  15. Korecki CL, MacLean JJ, Iatridis JC (2008) Dynamic compression effects on intervertebral disc mechanics and biology. Spine (Phila Pa 1976) 33:1403–1409. doi:10.1097/BRS.0b013e318175cae7

    Article  Google Scholar 

  16. Hartman RA, Bell KM, Debski RE et al (2012) Novel ex vivo mechanobiological intervertebral disc culture system. J Biomech 45:382–385. doi:10.1016/j.jbiomech.2011.10.036

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ekström L, Holm S, Holm AK, Hansson T (2004) In vivo porcine intradiscal pressure as a function of external loading. J Spinal Disord Tech 17:312–316

    Article  PubMed  Google Scholar 

  18. Nachemson AL, Morris JM (1964) In vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbar discs. J Bone Joint Surg Am 46:1077–1092

    PubMed  CAS  Google Scholar 

  19. Berkson MH (1977) Mechanical properties of the human lumbar spine flexibilities, intradiscal pressures, posterior element influences. Proc Inst Med Chic 31:138–143

    PubMed  CAS  Google Scholar 

  20. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976) 24:2468–2474

    Article  CAS  Google Scholar 

  21. Wilke HJ, Neef P, Caimi M et al (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24:755–762

    Article  CAS  Google Scholar 

  22. Nachemson AL (1981) Disc pressure measurements. Spine (Phila Pa 1976) 6:93–97

    Article  CAS  Google Scholar 

  23. Handa T, Ishihara H, Ohshima H et al (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine (Phila Pa 1976) 22:1085–1091

    Article  CAS  Google Scholar 

  24. Ishihara H, McNally DS, Urban JP, Hall AC (1996) Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J Appl Physiol 80:839–846

    PubMed  CAS  Google Scholar 

  25. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31:2151–2161. doi:10.1097/01.brs.0000231761.73859.2c

    Article  Google Scholar 

  26. Reitmaier S, Wolfram U, Ignatius A et al (2012) Hydrogels for nucleus replacement–facing the biomechanical challenge. J Mech Behav Biomed Mater 14:67–77. doi:10.1016/j.jmbbm.2012.05.010

    Article  PubMed  CAS  Google Scholar 

  27. Van der Veen AJ, Bisschop A, Mullender MG, van Dieën JH (2013) Modelling creep behaviour of the human intervertebral disc. J Biomech 46:2101–2103. doi:10.1016/j.jbiomech.2013.05.026

    Article  PubMed  Google Scholar 

  28. Masuoka K, Michalek AJ, MacLean JJ et al (2007) Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro. Spine (Phila Pa 1976) 32:1974–1979. doi:10.1097/BRS.0b013e318133d591

    Article  Google Scholar 

  29. Van der Veen AJ, Mullender MG, Kingma I et al (2008) Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments. J Biomech 41:1260–1268. doi:10.1016/j.jbiomech.2008.01.010

    Article  PubMed  Google Scholar 

  30. Reitmaier S, Schmidt H, Ihler R et al (2013) Preliminary investigations on intradiscal pressures during daily activities: an in vivo study using the merino sheep. PLoS One 8:e69610. doi:10.1371/journal.pone.0069610

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Van der Veen AJ, van Dieën JH, Nadort A et al (2007) Intervertebral disc recovery after dynamic or static loading in vitro: is there a role for the endplate? J Biomech 40:2230–2235. doi:10.1016/j.jbiomech.2006.10.018

    Article  PubMed  Google Scholar 

  32. Tyrrell AR, Reilly T, Troup JD (1985) Circadian variation in stature and the effects of spinal loading. Spine (Phila Pa 1976) 10:161–164

    Article  CAS  Google Scholar 

  33. Van der Veen AJ, Mullender M, Smit TH et al (2005) Flow-related mechanics of the intervertebral disc: the validity of an in vitro model. Spine (Phila Pa 1976) 30:E534–E539

    Article  Google Scholar 

  34. Lotz JC (2004) Animal models of intervertebral disc degeneration: lessons learned. Spine (Phila Pa 1976) 29:2742–2750

    Article  Google Scholar 

  35. Kingma I, Meijer R, Layla H et al (2001) Stress distribution changes in bovine vertebrae just below the endplate after sustained loading. Clin Biomech (Bristol, Avon) 16 Suppl 1:135–142

    Google Scholar 

  36. Adams MA, McMillan DW, Green TP, Dolan P (1996) Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine (Phila Pa 1976) 21:434–438

    Article  CAS  Google Scholar 

  37. Brinckmann P, Grootenboer H, Brickmann P (1991) Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine (Phila Pa 1976) 16:641–646

    Article  CAS  Google Scholar 

  38. Ranu HS (1990) Measurement of pressures in the nucleus and within the annulus of the human spinal disc: due to extreme loading. Proc Inst Mech Eng H 204:141–146

    Article  PubMed  CAS  Google Scholar 

  39. Bron JL, van der Veen AJ, Helder MN et al (2010) Biomechanical and in vivo evaluation of experimental closure devices of the annulus fibrosus designed for a goat nucleus replacement model. Eur Spine J 19:1347–1355. doi:10.1007/s00586-010-1384-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Buttermann GR, Beaubien BP, Saeger LC (2009) Mature runt cow lumbar intradiscal pressures and motion segment biomechanics. Spine J 9:105–114. doi:10.1016/j.spinee.2007.09.006

    Article  PubMed  Google Scholar 

  41. Smit TH (2002) The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur Spine J 11:137–144. doi:10.1007/s005860100346

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hoogendoorn RJW, Helder MN, Kroeze RJ et al (2008) Reproducible long-term disc degeneration in a large animal model. Spine (Phila Pa 1976) 33:949–954. doi:10.1097/BRS.0b013e31816c90f0

    Article  Google Scholar 

  43. Krijnen MR, Mensch D, van Dieen JH et al (2006) Primary spinal segment stability with a stand-alone cage: in vitro evaluation of a successful goat model. Acta Orthop 77:454–461. doi:10.1080/17453670610046398

    Article  PubMed  Google Scholar 

  44. Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37:197–204. doi:10.1016/S0021-9290(03)00308-7

    Article  PubMed  CAS  Google Scholar 

  45. Claus A, Hides J, Moseley GL, Hodges P (2008) Sitting versus standing: does the intradiscal pressure cause disc degeneration or low back pain? J Electromyogr Kinesiol 18:550–558. doi:10.1016/j.jelekin.2006.10.011

    Article  PubMed  Google Scholar 

  46. Nachemson A (1966) The load on lumbar disks in different positions of the body. Clin Orthop Relat Res 45:107–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Joost Meijering and Daniël Witte for their aid in performing the experiments, and Kaj Emanuel for proof reading the manuscript. TS acknowledges the support from ZonMW-VICI Grant 918.11.635.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter-Paul A. Vergroesen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 66226 kb)

Supplementary material 2 (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergroesen, PP.A., van der Veen, A.J., van Royen, B.J. et al. Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Eur Spine J 23, 2359–2368 (2014). https://doi.org/10.1007/s00586-014-3450-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3450-4

Keywords

Navigation