Skip to main content
Log in

Preoperative pelvic axial rotation: a possible predictor for postoperative coronal decompensation in thoracolumbar/lumbar adolescent idiopathic scoliosis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Background

The pelvis as the biomechanical foundation of spine, plays an important role in the balance of the stance and gait through the multi-link spinal-pelvic system. If the pelvic axial rotation (PAR) exists in adolescent idiopathic scoliosis (AIS) patients, it should theoretically have some effects on the body balance.

Purpose

To explore the probable effects of preoperative PAR on the spinal balance in coronal plane in AIS patients with main thoracolumbar/lumbar (TL/L) curve after posterior spinal instrumentation.

Methods

Thirty-eight AIS patients (age: 15 ± 1.5 years) with main TL/L curve (51° ± 6.2°) were recruited retrospectively into this study. The mean follow-up period was 27 months (24–36 months). Standing full spine posteroanterior radiographs were taken preoperatively, 3 month and 1 year postoperatively, and at last follow-up. The convex/concave ratio (CV/CC ratio) of the anterior superior iliac spine laterally and the inferior ilium at the sacroiliac joint medially was measured on posteroanterior radiographs. According to the preoperative CV/CC ratios, the patients were divided into two groups: normal group (N-group: 0.95 ≤ CV/CC ≤ 1.05); and the asymmetrical group (A-group: CV/CC < 0.95, or >1.05).

Results

In all the patients, the 3-month-postoperative CV/CC ratio (1.026 ± 0.087) was significantly different from the preoperative CV/CC ratio (0.969 ± 0.095, P < 0.001), indicating that the pelvis had rotated in the opposite direction of the corrective derotation load applied to the TL/L spine after surgery. No significant change was found in the CV/CC ratio from 3-month-postoperative to the last follow-up (1.013 ± 0.103, P > 0.05). There was no significant difference in the demographic, phenotypic, and treatment variables between the N- (n = 16) and A-groups (n = 22) (P > 0.05). However, more coronal decompensation occurred in the A-group after surgery (36.4 vs. 0.0 %, P = 0.013): two patients having trunk translation, three having lower instrumented vertebra (LIV) translation, and one having LIV tilt; meanwhile, one patient having both LIV translation and LIV tilt, and one having both trunk translation and LIV tilt.

Conclusions

The present study confirmed the existence of PAR in AIS patients, and indicated that the pelvis would experience an active rebalancing in the transverse plane within 3 months after spinal correction, and since then, its position would remain stable. Moreover, TL/L-AIS patients with preoperative asymmetrical PAR probably had greater risk of coronal decompensation postoperatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA (2008) Adolescent idiopathic scoliosis. Lancet 371:1527–1537. doi:10.1016/S0140-6736(08)60658-3

    Article  PubMed  Google Scholar 

  2. Asher MA, Cook LT (1995) The transverse plane evolution of the most common adolescent idiopathic scoliosis deformities. A cross-sectional study of 181 patients. Spine (Phila Pa 1976) 20:1386–1391

    CAS  Google Scholar 

  3. Dubousset J (1995) Three dimensional analysis of the scoliotic deformity. In: Weinstein SL (ed) The pediatric spine: principles and practice. Raven Press, New York, pp 479–495

    Google Scholar 

  4. Gum JL, Asher MA, Burton DC, Lai SM, Lambart LM (2007) Transverse plane pelvic rotation in adolescent idiopathic scoliosis: primary or compensatory? Eur Spine J 16:1579–1586. doi:10.1007/s00586-007-0400-4

    Article  PubMed  Google Scholar 

  5. Asher MA, Lai SM, Carlson BB, Gum JL, Burton DC (2010) Transverse plane pelvic rotation increase (TPPRI) following rotationally corrective instrumentation of adolescent idiopathic scoliosis double curves. Scoliosis 5:18. doi:10.1186/1748-7161-5-18

    Article  PubMed  Google Scholar 

  6. Karski T (2006) Recent observations in the biomechanical etiology of so-called idiopathic scoliosis. New classification of spinal deformity–I-st, II-nd and III-rd etiopathological groups. Stud Health Technol Inform 123:473–482

    PubMed  Google Scholar 

  7. Burwell RG, Aujla RK, Freeman BJ, Dangerfield PH, Cole AA, Kirby AS, Pratt RK, Webb JK, Moulton A (2006) Patterns of extra-spinal left-right skeletal asymmetries and proximo-distal disproportion in adolescent girls with lower spine scoliosis: ilio-femoral length asymmetry & bilateral tibial/foot length disproportion. Stud Health Technol Inform 123:101–108

    PubMed  CAS  Google Scholar 

  8. Qiu XS, Zhang JJ, Yang SW, Lv F, Wang ZW, Chiew J, Ma WW, Qiu Y (2012) Anatomical study of the pelvis in patients with adolescent idiopathic scoliosis. J Anat 220:173–178. doi:10.1111/j.1469-7580.2011.01458.x

    Article  PubMed  Google Scholar 

  9. Lafage V, Schwab F, Vira S, Hart R, Burton D, Smith JS, Boachie-Adjei O, Shelokov A, Hostin R, Shaffrey CI, Gupta M, Akbarnia BA, Bess S, Farcy JP (2011) Does vertebral level of pedicle subtraction osteotomy correlate with degree of spinopelvic parameter correction? J Neurosurg Spine 14:184–191. doi:10.3171/2010.9.SPINE10129

    Article  PubMed  Google Scholar 

  10. Schwab F, Lafage V, Boyce R, Skalli W, Farcy JP (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine (Phila Pa 1976) 31:E959–E967

    Article  Google Scholar 

  11. Mahaudens P, Banse X, Mousny M, Detrembleur C (2009) Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. Eur Spine J 18:512–521. doi:10.1007/s00586-009-0899-7

    Article  PubMed  CAS  Google Scholar 

  12. Clements DH, Betz RR, Newton PO, Rohmiller M, Marks MC, Bastrom T (2009) Correlation of scoliosis curve correction with the number and type of fixation anchors. Spine (Phila Pa 1976) 34:2147–2150. doi:10.1097/BRS.0b013e3181adb35d

    Article  Google Scholar 

  13. Lucas B, Asher M, McIff T, Lark R, Burton D (2005) Estimation of transverse plane pelvic rotation using a posterior-anterior radiograph. Spine (Phila Pa 1976) 30:E20–E27

    Article  Google Scholar 

  14. Schwender JD, Denis F (2000) Coronal plane imbalance in adolescent idiopathic scoliosis with left lumbar curves exceeding 40 degrees: the role of the lumbosacral hemicurve. Spine (Phila Pa 1976) 25:2358–2363

    Article  CAS  Google Scholar 

  15. Klepps SJ, Lenke LG, Bridwell KH, Bassett GS, Whorton J (2001) Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 26:E74–E79

    Article  CAS  Google Scholar 

  16. Stokes IA, Bigalow LC, Moreland MS (1986) Measurement of axial rotation of vertebrae in scoliosis. Spine (Phila Pa 1976) 11:213–218

    Article  CAS  Google Scholar 

  17. Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83-A:1169–1181

    PubMed  CAS  Google Scholar 

  18. Lenke LG, Betz RR, Clements D, Merola A, Haher T, Lowe T, Newton P, Bridwell KH, Blanke K (2002) Curve prevalence of a new classification of operative adolescent idiopathic scoliosis: does classification correlate with treatment? Spine (Phila Pa 1976) 27:604–611

    Article  Google Scholar 

  19. Mladenov KV, Vaeterlein C, Stuecker R (2011) Selective posterior thoracic fusion by means of direct vertebral derotation in adolescent idiopathic scoliosis: effects on the sagittal alignment. Eur Spine J 20:1114–1117. doi:10.1007/s00586-011-1740-7

    Article  PubMed  Google Scholar 

  20. Lee SM, Suk SI, Chung ER (2004) Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:343–349

    Article  Google Scholar 

  21. Cheng JS, Lebow RL, Schmidt MH, Spooner J (2008) Rod derotation techniques for thoracolumbar spinal deformity. Neurosurgery 63:149–156. doi:10.1227/01.NEU.0000320432.81345.94

    Article  PubMed  Google Scholar 

  22. Miller DJ, Jameel O, Matsumoto H, Hyman JE, Schwab FJ, Roye DP Jr, Vitale MG (2010) Factors affecting distal end & global decompensation in coronal/sagittal planes 2 years after fusion. Stud Health Technol Inform 158:141–146

    PubMed  Google Scholar 

  23. Li J, Hwang SW, Shi Z, Yan N, Yang C, Wang C, Zhu X, Hou T, Li M (2011) Analysis of radiographic parameters relevant to the lowest instrumented vertebrae and postoperative coronal balance in Lenke 5C patients. Spine (Phila Pa 1976) 36:1673–1678. doi:10.1097/BRS.0b013e3182091fba

    Article  Google Scholar 

  24. Mason DE, Carango P (1991) Spinal decompensation in Cotrel-Dubousset instrumentation. Spine (Phila Pa 1976) 16:S394–S403

    Article  CAS  Google Scholar 

  25. Kim YJ, Bridwell KH, Lenke LG, Rhim S, Cheh G (2006) Sagittal thoracic decompensation following long adult lumbar spinal instrumentation and fusion to L5 or S1: causes, prevalence, and risk factor analysis. Spine (Phila Pa 1976) 31:2359–2366. doi:10.1097/01.brs.0000238969.59928.73

    Article  Google Scholar 

  26. Cho KJ, Suk SI, Park SR, Kim JH, Kang SB, Kim HS, Oh SJ (2010) Risk factors of sagittal decompensation after long posterior instrumentation and fusion for degenerative lumbar scoliosis. Spine (Phila Pa 1976) 35:1595–1601. doi:10.1097/BRS.0b013e3181bdad89

    Article  Google Scholar 

  27. Hattori T, Sakaura H, Iwasaki M, Nagamoto Y, Yoshikawa H, Sugamoto K (2011) In vivo three-dimensional segmental analysis of adolescent idiopathic scoliosis. Eur Spine J. doi:10.1007/s00586-011-1869-4

    PubMed  Google Scholar 

  28. Normelli H, Sevastik J, Akrivos J (1985) The length and ash weight of the ribs of normal and scoliotic persons. Spine (Phila Pa 1976) 10:590–592

    Article  CAS  Google Scholar 

  29. Burwell RG, Freeman BJ, Dangerfield PH, Aujla RK, Cole AA, Kirby AS, Pratt RK, Webb JK, Moulton A (2006) Left-right upper arm length asymmetry associated with apical vertebral rotation in subjects with thoracic scoliosis: anomaly of bilateral symmetry affecting vertebral, costal and upper arm physes? Stud Health Technol Inform 123:66–71

    PubMed  CAS  Google Scholar 

  30. Burwell RG, Aujla RK, Freeman BJ, Dangerfield PH, Cole AA, Kirby AS, Pratt RK, Webb JK, Moulton A (2006) Patterns of extra-spinal left-right skeletal asymmetries in adolescent girls with lower spine scoliosis: relative lengthening of the ilium on the curve concavity & of right lower limb segments. Stud Health Technol Inform 123:57–65

    PubMed  CAS  Google Scholar 

  31. Cheung KM, Cheng AC, Cheung WY, Chooi YS, Wong YW, Luk KD (2008) Right hip adduction deficit and adolescent idiopathic scoliosis. J Orthop Surg (Hong Kong) 16:24–26

    CAS  Google Scholar 

  32. Sponseller PD, Betz R, Newton PO, Lenke LG, Lowe T, Crawford A, Sucato D, Lonner B, Marks M, Bastrom T (2009) Differences in curve behavior after fusion in adolescent idiopathic scoliosis patients with open triradiate cartilages. Spine (Phila Pa 1976) 34:827–831. doi:10.1097/BRS.0b013e31819139ef

    Article  Google Scholar 

  33. Suk SI, Lee SM, Chung ER, Kim JH, Kim WJ, Sohn HM (2003) Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis. Spine (Phila Pa 1976) 28:484–491. doi:10.1097/01.BRS.0000048653.75549.40

    Google Scholar 

  34. Geck MJ, Rinella A, Hawthorne D, Macagno A, Koester L, Sides B, Bridwell K, Lenke L, Shufflebarger H (2009) Comparison of surgical treatment in Lenke 5C adolescent idiopathic scoliosis: anterior dual rod versus posterior pedicle fixation surgery: a comparison of two practices. Spine (Phila Pa 1976) 34:1942–1951. doi:10.1097/BRS.0b013e3181a3c777

    Article  Google Scholar 

  35. Birchall D, Hughes D, Gregson B, Williamson B (2005) Demonstration of vertebral and disc mechanical torsion in adolescent idiopathic scoliosis using three-dimensional MR imaging. Eur Spine J 14:123–129. doi:10.1007/s00586-004-0705-5

    Article  PubMed  Google Scholar 

  36. Berthonnaud E, Dimnet J, Roussouly P, Labelle H (2005) Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech 18:40–47

    Article  PubMed  Google Scholar 

  37. Iwahara T, Imai M, Atsuta Y (1998) Quantification of cosmesis for patients affected by adolescent idiopathic scoliosis. Eur Spine J 7:12–15

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 81101335 and 30901570).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, XS., Wang, ZW., Qiu, Y. et al. Preoperative pelvic axial rotation: a possible predictor for postoperative coronal decompensation in thoracolumbar/lumbar adolescent idiopathic scoliosis. Eur Spine J 22, 1264–1272 (2013). https://doi.org/10.1007/s00586-013-2695-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-013-2695-7

Keywords

Navigation