Skip to main content
Log in

Footprint mismatch in total cervical disc arthroplasty

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Cervical disc arthroplasty has become a commonplace surgery for the treatment of cervical radiculopathy and myelopathy. Most manufacturers derive their implant dimensions from early published cadaver studies. Ideal footprint match of the prosthesis is essential for good surgical outcome.

Methods

We measured the dimensions of cervical vertebrae from computed tomography (CT) scans and to assess the accuracy of match achieved with the most common cervical disc prostheses [Bryan (Medtronic), Prestige LP (Medtronic), Discover (DePuy) Prodisc-C (Synthes)]. A total of 192 endplates in 24 patients (56.3 years) were assessed. The anterior–posterior and mediolateral diameters of the superior and inferior endplates were measured with a digital measuring system.

Results

Overall, 53.5 % of the largest device footprints were smaller in the anterior–posterior diameter and 51.1 % in the mediolateral diameter were smaller than cervical endplate diameters. For levels C5/C6 and C6/C7 an inappropriate size match was noted in 61.9 % as calculated from the anteroposterior diameter. Mismatch at the center mediolateral diameter was noted in 56.8 %. Of the endplates in the current study up to 58.1 % of C5/C6 and C6/C7, and up to 45.3 % of C3/C4 and C4/C5 were larger than the most frequently implanted cervical disc devices.

Conclusion

Surgeons and manufacturers should be aware of the size mismatch in currently available cervical disc prostheses, which may endanger the safety and efficacy of the procedure. Undersizing the prosthetic device may lead to subsidence, loosening, heterotopic ossification and biomechanical failure caused by an incorrect center of rotation and load distribution, affecting the facet joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mummaneni PV, Burkus JK, Haid RW, Traynelis VC, Zdeblick TA (2007) Clinical and radiographic analysis of cervical disc arthroplasty compared with allograft fusion: a randomized controlled clinical trial. J Neurosurg Spine 6(3):198–209. doi:10.3171/spi.2007.6.3.198

    Article  PubMed  Google Scholar 

  2. Lin CY, Kang H, Rouleau JP, Hollister SJ, Marca FL (2009) Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study. Spine (Phila Pa 1976) 34(15):1554–1560. doi:10.1097/BRS.0b013e3181aa643b

    Article  Google Scholar 

  3. Gilad I, Nissan M (1985) Sagittal evaluation of elemental geometrical dimensions of human vertebrae. J Anat 143:115–120

    PubMed  CAS  Google Scholar 

  4. Panjabi MM, Duranceau J, Goel V, Oxland T, Takata K (1991) Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions. Spine (Phila Pa 1976) 16(8):861–869

    Article  CAS  Google Scholar 

  5. Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3(2):163–175

    Article  PubMed  CAS  Google Scholar 

  6. Anderson PA, Rouleau JP (2004) Intervertebral disc arthroplasty. Spine (Phila Pa 1976) 29(23):2779–2786

    Article  Google Scholar 

  7. Eck JC, Humphreys SC, Lim TH, Jeong ST, Kim JG, Hodges SD, An HS (2002) Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine (Phila Pa 1976) 27(22):2431–2434. doi:10.1097/01.BRS.0000031261.66972.B1

    Article  Google Scholar 

  8. Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81(4):519–528

    PubMed  CAS  Google Scholar 

  9. Bertagnoli R, Yue JJ, Shah RV, Nanieva R, Pfeiffer F, Fenk-Mayer A, Kershaw T, Husted DS (2005) The treatment of disabling single-level lumbar discogenic low back pain with total disc arthroplasty utilizing the prodisc prosthesis: a prospective study with 2-year minimum follow-up. Spine (Phila Pa 1976) 30(19):2230–2236

    Article  Google Scholar 

  10. Leung C, Casey AT, Goffin J, Kehr P, Liebig K, Lind B, Logroscino C, Pointillart V (2005) Clinical significance of heterotopic ossification in cervical disc replacement: a prospective multicenter clinical trial. Neurosurgery 57(4):759–763 (discussion 759–763)

    Article  PubMed  Google Scholar 

  11. Parkinson JF, Sekhon LH (2005) Cervical arthroplasty complicated by delayed spontaneous fusion. Case report. J Neurosurg Spine 2(3):377–380. doi:10.3171/spi.2005.2.3.0377

    Article  Google Scholar 

  12. Fong SY, DuPlessis SJ, Casha S, Hurlbert RJ (2006) Design limitations of Bryan disc arthroplasty. Spine J 6(3):233–241. doi:10.1016/j.spinee.2006.01.007

    Article  PubMed  Google Scholar 

  13. Mehren C, Mayer HM (2005) Artificial cervical disc replacement—an update. Neurol India 53(4):440–444

    Article  PubMed  CAS  Google Scholar 

  14. Suchomel P, Jurak L, Benes V 3rd, Brabec R, Bradac O, Elgawhary S (2010) Clinical results and development of heterotopic ossification in total cervical disc replacement during a 4-year follow-up. Eur Spine J 19(2):307–315. doi:10.1007/s00586-009-1259-3

    Article  PubMed  Google Scholar 

  15. Sola S, Hebecker R, Mann S (2008) Bryan cervical disc prosthesis: 5 years follow-up. Paper presented at the Motion preservation technology 8th annual meeting, Miami, 06–09 May 2008

  16. Link HD, McAfee PC, Pimenta L (2004) Choosing a cervical disc replacement. Spine J 4(6 Suppl):294S–302S. doi:10.1016/j.spinee.2004.07.022

    Article  PubMed  Google Scholar 

  17. Gstoettner M, Heider D, Liebensteiner M, Bach CM (2008) Footprint mismatch in lumbar total disc arthroplasty. Eur Spine J 17(11):1470–1475. doi:10.1007/s00586-008-0780-0

    Article  PubMed  Google Scholar 

  18. Zhou SH, McCarthy ID, McGregor AH, Coombs RR, Hughes SP (2000) Geometrical dimensions of the lower lumbar vertebrae—analysis of data from digitised CT images. Eur Spine J 9(3):242–248

    Article  PubMed  CAS  Google Scholar 

  19. Cheng CC, Ordway NR, Zhang X, Lu YM, Fang H, Fayyazi AH (2007) Loss of cervical endplate integrity following minimal surface preparation. Spine (Phila Pa 1976) 32(17):1852–1855. doi:10.1097/BRS.0b013e31811ece5a

    Article  Google Scholar 

  20. Kim SW, Shin JH, Arbatin JJ, Park MS, Chung YK, McAfee PC (2008) Effects of a cervical disc prosthesis on maintaining sagittal alignment of the functional spinal unit and overall sagittal balance of the cervical spine. Eur Spine J 17(1):20–29. doi:10.1007/s00586-007-0459-y

    Article  PubMed  Google Scholar 

  21. Truumees E, Demetropoulos CK, Yang KH, Herkowitz HN (2003) Failure of human cervical endplates: a cadaveric experimental model. Spine (Phila Pa 1976) 28(19):2204–2208. doi:10.1097/01.BRS.0000084881.11695.50

    Article  Google Scholar 

  22. Lim TH, Kwon H, Jeon CH, Kim JG, Sokolowski M, Natarajan R, An HS, Andersson GB (2001) Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine (Phila Pa 1976) 26(8):951–956

    Article  CAS  Google Scholar 

  23. Steffen T, Tsantrizos A, Aebi M (2000) Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine (Phila Pa 1976) 25(9):1077–1084

    Article  CAS  Google Scholar 

  24. Penning L, Wilmink JT (1987) Rotation of the cervical spine. A CT study in normal subjects. Spine (Phila Pa 1976) 12(8):732–738

    Article  CAS  Google Scholar 

  25. Galbusera F, Anasetti F, Bellini CM, Costa F, Fornari M (2010) The influence of the axial, antero-posterior and lateral positions of the center of rotation of a ball-and-socket disc prosthesis on the cervical spine biomechanics. Clin Biomech (Bristol, Avon) 25(5):397–401. doi:10.1016/j.clinbiomech.2010.01.010

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Thaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaler, M., Hartmann, S., Gstöttner, M. et al. Footprint mismatch in total cervical disc arthroplasty. Eur Spine J 22, 759–765 (2013). https://doi.org/10.1007/s00586-012-2594-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2594-3

Keywords

Navigation