Skip to main content

Advertisement

Log in

Interspinous implants (X Stop®, Wallis®, Diam®) for the treatment of LSS: is there a correlation between radiological parameters and clinical outcome?

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Neurogenic intermittent claudication, caused by lumbar spinal stenosis (LSS), usually occurs after the age of 50 and is one of the most common degenerative spinal diseases in the elderly. Among patients over the age of 65 with LSS, open decompression is the most frequently performed spinal operation. The recently introduced interspinous spacers are a new alternative under discussion. In this retrospective study, we reviewed medical records and radiographs of patients with LSS and NIC treated from June 2003 to June 2007. All included patients (n = 129) were treated with interspinous implants (X Stop® Wallis®, or Diam®). Evaluations of pain, using a visual analog scale (VAS), and radiographic signs, using two-plane X-rays of the lumbar spine, were performed preoperatively (preop), postoperatively (postop) and after discharge (FU 2–3). Gender ratio (m:w) was 1.1:1. Mean age of the patients was 60.8 ± 16.3 years. Foraminal height, foraminal width, foraminal cross-sectional area, intervertebral angle, as well as anterior and posterior disc height changed significantly (P < 0.0001) after implantation of the interspinous device. Postoperatively, symptom relief (VAS) was significant (P < 0.0001). The X Stop implant improved (in some cases significantly) the radiographic parameters of foraminal height, width, and cross-sectional area, more than the Diam and Wallis implants; however, there was no significant difference among the three regarding symptom relief. FU 1 was on average 202.3 ± 231.9 and FU 2 527.2 ± 377.0 days postoperatively. During FU, the radiological improvements seemed to revert toward initial values. Pain (VAS) did not increase despite this “loss of correction.” There was no correlation between age and symptom improvement. There was only very weak correlation between the magnitude of radiographic improvement and the extent of pain relief (VAS). The interspinous implant did not worsen low-grade spondylolisthesis. Provided there is a strict indication and fusion is not required, implantation of an interspinous spacer is a good alternative to treat LSS. The interspinous implant offers significant, longlasting symptom control, even if initially significant radiological changes seem to revert toward the initial values (“loss of correction”).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amundsen T, Weber H, Nordal HJ, Magnaes B, Abdelnoor M, Lilleas F (2000) Lumbar spinal stenosis: conservative or surgical management: a prospective 10-year study. Spine 25:1424–1435. doi:10.1097/00007632-200006010-00016 (discussion 1435–1426)

    Article  PubMed  CAS  Google Scholar 

  2. Anderson PA, Tribus CB, Kitchel SH (2006) Treatment of neurogenic claudication by interspinous decompression: application of the X Stop device in patients with lumbar degenerative spondylolisthesis. J Neurosurg 4:463–471

    Google Scholar 

  3. Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW (1990) Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects: a prospective investigation. J Bone Joint Surg 72:403–408

    PubMed  CAS  Google Scholar 

  4. Bono CM, Vaccaro AR (2007) Interspinous process devices in the lumbar spine. J Spinal Disord Tech 20:255–261. doi:10.1097/BSD.0b013e3180331352

    Article  PubMed  Google Scholar 

  5. Botwin KP, Gruber RD (2003) Lumbar spinal stenosis: anatomy and pathogenesis. Phys Med Rehabil Clin N Am 14:1–15. doi:10.1016/S1047-9651(02)00063-3

    PubMed  Google Scholar 

  6. Chung SS, Lee CS, Kim SH, Chung MW, Ahn JM (2000) Effect of low back posture on the morphology of the spinal canal. Skeletal Radiol 29:217–223. doi:10.1007/s002560050596

    Article  PubMed  CAS  Google Scholar 

  7. Cinotti G, De Santis P, Nofroni I, Postacchini F (2002) Stenosis of lumbar intervertebral foramen: anatomic study on predisposing factors. Spine 27:223–229. doi:10.1097/00007632-200202010-00002

    Article  PubMed  Google Scholar 

  8. Ciol MA, Deyo RA, Howell E, Kreif S (1996) An assessment of surgery for spinal stenosis: time trends, geographic variations, complications, and reoperations. J Am Geriatr Soc 44:285–290

    PubMed  CAS  Google Scholar 

  9. Costa F, Sassi M, Cardia A, Ortolina A, De Santis A, Luccarell G, Fornari M (2007) Degenerative lumbar spinal stenosis: analysis of results in a series of 374 patients treated with unilateral laminotomy for bilateral microdecompression. J Neurosurg 7:579–586

    Google Scholar 

  10. Danielson BI, Willen J, Gaulitz A, Niklason T, Hansson TH (1998) Axial loading of the spine during CT and MR in patients with suspected lumbar spinal stenosis. Acta Radiol 39:604–611

    PubMed  CAS  Google Scholar 

  11. Fuchs PD, Lindsey DP, Hsu KY, Zucherman JF, Yerby SA (2005) The use of an interspinous implant in conjunction with a graded facetectomy procedure. Spine 30:1266–1272. doi:10.1097/01.brs.0000164152.32734.d2 (discussion 1273–1264)

    Article  PubMed  Google Scholar 

  12. Fujiwara A, An HS, Lim TH, Haughton VM (2001) Morphologic changes in the lumbar intervertebral foramen due to flexion–extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study. Spine 26:876–882. doi:10.1097/00007632-200104150-00010

    Article  PubMed  CAS  Google Scholar 

  13. Geisser ME, Haig AJ, Tong HC, Yamakawa KS, Quint DJ, Hoff JT, Miner JA, Phalke VV (2007) Spinal canal size and clinical symptoms among persons diagnosed with lumbar spinal stenosis. Clin J Pain 23:780–785. doi:10.1097/AJP.0b013e31815349bf

    Article  PubMed  Google Scholar 

  14. Hasegawa T, An HS, Haughton VM, Nowicki BH (1995) Lumbar foraminal stenosis: critical heights of the intervertebral discs and foramina: a cryomicrotome study in cadavera. J Bone Joint Surg 77:32–38

    PubMed  CAS  Google Scholar 

  15. Hasue M, Kunogi J, Konno S, Kikuchi S (1989) Classification by position of dorsal root ganglia in the lumbosacral region. Spine 14:1261–1264. doi:10.1097/00007632-198911000-00021

    Article  PubMed  CAS  Google Scholar 

  16. Hoyland JA, Freemont AJ, Jayson MI (1989) Intervertebral foramen venous obstruction: a cause of periradicular fibrosis? Spine 14:558–568. doi:10.1097/00007632-198906000-00002

    Article  PubMed  CAS  Google Scholar 

  17. Hsu KY, Zucherman JF, Hartjen CA, Mehalic TF, Implicito DA, Martin MJ, Johnson DR 2nd, Skidmore GA, Vessa PP, Dwyer JW, Cauthen JC, Ozuna RM (2006) Quality of life of lumbar stenosis-treated patients in whom the X Stop interspinous device was implanted. J Neurosurg 5:500–507

    Google Scholar 

  18. Inufusa A, An HS, Lim TH, Hasegawa T, Haughton VM, Nowicki BH (1996) Anatomic changes of the spinal canal and intervertebral foramen associated with flexion–extension movement. Spine 21:2412–2420. doi:10.1097/00007632-199611010-00002

    Article  PubMed  CAS  Google Scholar 

  19. Katz JN (1995) Lumbar spinal fusion:surgical rates, costs, and complications. Spine 20:78S–83S. doi:10.1097/00007632-199512151-00002

    Article  PubMed  CAS  Google Scholar 

  20. Katz JN, Harris MB (2008) Clinical practice: lumbar spinal stenosis. N Engl J Med 358:818–825. doi:10.1056/NEJMcp0708097

    Article  PubMed  CAS  Google Scholar 

  21. Katz JN, Lipson SJ, Chang LC, Levine SA, Fossel AH, Liang MH (1996) Seven- to 10-year outcome of decompressive surgery for degenerative lumbar spinal stenosis. Spine 21:92–98. doi:10.1097/00007632-199601010-00022

    Article  PubMed  CAS  Google Scholar 

  22. Kim KA, McDonald M, Pik JH, Khoueir P, Wang MY (2007) Dynamic intraspinous spacer technology for posterior stabilization: case–control study on the safety, sagittal angulation, and pain outcome at 1-year follow-up evaluation. Neurosurg Focus 22:E7

    PubMed  Google Scholar 

  23. Kosaka H, Sairyo K, Biyani A, Leaman D, Yeasting R, Higashino K, Sakai T, Katoh S, Sano T, Goel VK, Yasui N (2007) Pathomechanism of loss of elasticity and hypertrophy of lumbar ligamentum flavum in elderly patients with lumbar spinal canal stenosis. Spine 32:2805–2811. doi:10.1097/BRS.0b013e31815b650f

    Article  PubMed  Google Scholar 

  24. Lindsey DP, Swanson KE, Fuchs P, Hsu KY, Zucherman JF, Yerby SA (2003) The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine 28:2192–2197. doi:10.1097/01.BRS.0000084877.88192.8E

    Article  PubMed  Google Scholar 

  25. Madsen R, Jensen TS, Pope M, Sorensen JS, Bendix T (2008) The effect of body position and axial load on spinal canal morphology: an MRI study of central spinal stenosis. Spine 33:61–67. doi:10.1097/BRS.0b013e31815e395f

    Article  PubMed  Google Scholar 

  26. Malmivaara A, Slatis P, Heliovaara M, Sainio P, Kinnunen H, Kankare J, Dalin-Hirvonen N, Seitsalo S, Herno A, Kortekangas P, Niinimaki T, Ronty H, Tallroth K, Turunen V, Knekt P, Harkanen T, Hurri H (2007) Surgical or non-operative treatment for lumbar spinal stenosis? A randomized controlled trial. Spine 32:1–8. doi:10.1097/01.brs.0000251014.81875.6d

    Article  PubMed  Google Scholar 

  27. Mayoux-Benhamou MA, Revel M, Aaron C, Chomette G, Amor B (1989) A morphometric study of the lumbar foramen: influence of flexion–extension movements and of isolated disc collapse. Surg Radiol Anat 11:97–102. doi:10.1007/BF02096463

    Article  PubMed  CAS  Google Scholar 

  28. Moon ES, Kim HS, Park JO, Shin DE, Ha JW, Shim DJ, Kwak YH, Lee KI (2005) Comparison of the predictive value of myelography, computed tomography and MRI on the treadmill test in lumbar spinal stenosis. Yonsei Med J 46:806–811

    Article  PubMed  Google Scholar 

  29. Porter RW (1996) Spinal stenosis and neurogenic claudication. Spine 21:2046–2052. doi:10.1097/00007632-199609010-00024

    Article  PubMed  CAS  Google Scholar 

  30. Richards JC, Majumdar S, Lindsey DP, Beaupre GS, Yerby SA (2005) The treatment mechanism of an interspinous process implant for lumbar neurogenic intermittent claudication. Spine 30:744–749. doi:10.1097/01.brs.0000157483.28505.e3

    Article  PubMed  Google Scholar 

  31. Schmid MR, Stucki G, Duewell S, Wildermuth S, Romanowski B, Hodler J (1999) Changes in cross-sectional measurements of the spinal canal and intervertebral foramina as a function of body position: in vivo studies on an open-configuration MR system. AJR 172:1095–1102

    PubMed  CAS  Google Scholar 

  32. Schonstrom NS, Bolender NF, Spengler DM (1985) The pathomorphology of spinal stenosis as seen on CT scans of the lumbar spine. Spine 10:806–811. doi:10.1097/00007632-198511000-00005

    Article  PubMed  CAS  Google Scholar 

  33. Schulte TL, Hurschler C, Haversath M, Liljenqvist U, Bullmann V, Filler TJ, Osada N, Fallenberg EM, Hackenberg L (2008) The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression. Eur Spine J 17:1057–1065. doi:10.1007/s00586-008-0667-0

    Article  PubMed  Google Scholar 

  34. Siddiqui M, Karadimas E, Nicol M, Smith FW, Wardlaw D (2006) Influence of X Stop on neural foramina and spinal canal area in spinal stenosis. Spine 31:2958–2962. doi:10.1097/01.brs.0000247797.92847.7d

    Article  PubMed  Google Scholar 

  35. Siddiqui M, Smith FW, Wardlaw D (2007) One-year results of X Stop interspinous implant for the treatment of lumbar spinal stenosis. Spine 32:1345–1348. doi:10.1097/BRS.0b013e31805b7694

    Article  PubMed  Google Scholar 

  36. Sirvanci M, Bhatia M, Ganiyusufoglu KA, Duran C, Tezer M, Ozturk C, Aydogan M, Hamzaoglu A (2008) Degenerative lumbar spinal stenosis: correlation with Oswestry disability index and MR imaging. Eur Spine J 17:679–685. doi:10.1007/s00586-008-0646-5

    Article  PubMed  Google Scholar 

  37. Swanson KE, Lindsey DP, Hsu KY, Zucherman JF, Yerby SA (2003) The effects of an interspinous implant on intervertebral disc pressures. Spine 28:26–32. doi:10.1097/00007632-200301010-00008

    Article  PubMed  Google Scholar 

  38. Ullrich CG, Binet EF, Sanecki MG, Kieffer SA (1980) Quantitative assessment of the lumbar spinal canal by computed tomography. Radiology 134:137–143

    PubMed  CAS  Google Scholar 

  39. Vogt MT, Cawthon PM, Kang JD, Donaldson WF, Cauley JA, Nevitt MC (2006) Prevalence of symptoms of cervical and lumbar stenosis among participants in the osteoporotic fractures in men study. Spine 31:1445–1451. doi:10.1097/01.brs.0000219875.19688.a6

    Article  PubMed  Google Scholar 

  40. Wang YC, Jeng CM, Wu CY, Chang HY, Huang YC, Wang YJ, Wang PC (2008) Dynamic effects of axial loading on the lumbar spine during magnetic resonance imaging in patients with suspected spinal stenosis. J Formosan Med Assoc Taiwan yi zhi 107:334–339

    Article  Google Scholar 

  41. Weinstein JN, Tosteson TD, Lurie JD, Tosteson AN, Blood E, Hanscom B, Herkowitz H, Cammisa F, Albert T, Boden SD, Hilibrand A, Goldberg H, Berven S, An H (2008) Surgical versus non-surgical therapy for lumbar spinal stenosis. N Engl J Med 358:794–810. doi:10.1056/NEJMoa0707136

    Article  PubMed  CAS  Google Scholar 

  42. Willen J, Wessberg PJ, Danielsson B (2008) Surgical results in hidden lumbar spinal stenosis detected by axial loaded computed tomography and magnetic resonance imaging: an outcome study. Spine 33:E109–E115. doi:10.1097/BRS.0b013e318163f9ab

    Article  PubMed  Google Scholar 

  43. Zucherman JF, Hsu KY, Hartjen CA, Mehalic TF, Implicito DA, Martin MJ, Johnson DR 2nd, Skidmore GA, Vessa PP, Dwyer JW, Puccio ST, Cauthen JC, Ozuna RM (2005) A multicenter, prospective, randomized trial evaluating the X Stop interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine 30:1351–1358. doi:10.1097/01.brs.0000166618.42749.d1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Sobottke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobottke, R., Schlüter-Brust, K., Kaulhausen, T. et al. Interspinous implants (X Stop®, Wallis®, Diam®) for the treatment of LSS: is there a correlation between radiological parameters and clinical outcome?. Eur Spine J 18, 1494–1503 (2009). https://doi.org/10.1007/s00586-009-1081-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1081-y

Keywords

Navigation