Skip to main content

Advertisement

Log in

A comparative analysis of the molecular basis of fibrosis between tissues

  • Review Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

The aim of effective healing is to restore comparable structure and function to tissues. In some circumstances, this is not achieved, resulting in fibrotic scar tissue formation. Although this may have offered survival advantages in the past, fibrosis leads to functional disruption, organ failure and even death. Fibrosis affects many tissues types, but its ramifications are arguably most conspicuous in the skin. Dermal fibrosis impacts millions of people worldwide, and currently, treatment is not directed against a given molecular abnormality. Research demonstrates a complex picture of cellular and molecular interaction culminating in the deposition of fibrotic tissue. This article discusses key molecular mechanisms of fibrosis within tissues and highlights the similarities and differences amongst key pathways. There is compelling evidence for the involvement of toll-like receptor-4 and transforming growth factor β within fibrosis throughout all tissue types. With regards to other molecules, although there are similarities between tissues, evidence is inconsistent. In order to gain therapeutic advances in the prevention or treatment of fibrosis, research should strive to understand specific molecular mechanisms in models that closely replicate human disease. Further, there should be a healthy scepticism regarding the applicability of given molecular targets between settings. This review highlights a number of prime movers to fibrosis that are the focus of current research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alster TS, Tanzi EL (2003) Hypertrophic scars and keloids: etiology and management. Am J Clin Dermatol 4(4):235–243

    Article  PubMed  Google Scholar 

  • Arai T, Abe K, Matsuoka H, Yoshida M, Mori M, Goya S, Kida H, Nishino K, Osaki T, Tachibana I, Kaneda Y, Hayashi S (2000) Introduction of the interleukin-10 gene into mice inhibited bleomycin-induced lung injury in vivo. Am J Physiol Lung Cell Mol Physiol 278(5):L914–L922

    Article  CAS  PubMed  Google Scholar 

  • Arthur MJ (2002) Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 122(5):1525–1528

    Article  PubMed  Google Scholar 

  • Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayat A, McGrouther DA, Ferguson MW (2003) Skin scarring. BMJ 326(7380):88–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benyon RC, Iredale JP, Goddard S, Winwood PJ, Arthur MJ (1996) Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology 110(3):821–831

    Article  CAS  PubMed  Google Scholar 

  • Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117(3):568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brickey WJ, Neuringer IP, Walton W, Hua X, Wang EY, Jha S, Sempowski GD, Yang X, Kirby SL, Tilley SL, Ting JP (2012) MyD88 provides a protective role in long-term radiation-induced lung injury. Int J Radiat Biol 88(4):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broekema M, Harmsen MC, van Luyn MJ, Koerts JA, Petersen AH, van Kooten TG, van Goor H, Navis G, Popa ER (2007) Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol 18(1):165–175

    Article  CAS  PubMed  Google Scholar 

  • Brooks WW, Conrad CH (2000) Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J Mol Cell Cardiol 32(2):187–195

    Article  CAS  PubMed  Google Scholar 

  • Campbell MT, Hile KL, Zhang H, Asanuma H, Vanderbrink BA, Rink RR, Meldrum KK (2011) Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res 168(1):e61–e69

    Article  CAS  PubMed  Google Scholar 

  • Cheever AW, Williams ME, Wynn TA, Finkelman FD, Seder RA, Cox TM, Hieny S, Caspar P, Sher A (1994) Anti-IL-4 treatment of Schistosoma mansoni-infected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fibrosis. J Immunol 153(2):753–759

    CAS  PubMed  Google Scholar 

  • Cheng S, Lovett DH (2003) Gelatinase a (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol 162(6):1937–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA (1999a) An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 104(6):777–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiaramonte MG, Schopf LR, Neben TY, Cheever AW, Donaldson DD, Wynn TA (1999b) IL-13 is a key regulatory cytokine for Th2 cell-mediated pulmonary granuloma formation and IgE responses induced by Schistosoma mansoni eggs. J Immunol 162(2):920–930

    CAS  PubMed  Google Scholar 

  • Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Lee SY, McElwain K, McElwain S, Friedman S, Broide DH (2004) Inhibition of airway remodeling in IL-5-deficient mice. J Clin Invest 113(4):551–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu WM (2013) Tumor necrosis factor. Cancer Lett 328(2):222–225

    Article  CAS  PubMed  Google Scholar 

  • Clouthier DE, Comerford SA, Hammer RE (1997) Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J Clin Invest 100(11):2697–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbel M, Belleguic C, Boichot E, Lagente V (2002) Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol Toxicol 18(1):51–61

    Article  CAS  PubMed  Google Scholar 

  • Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  • Dolgachev VA, Ullenbruch MR, Lukacs NW, Phan SH (2009) Role of stem cell factor and bone marrow-derived fibroblasts in airway remodeling. Am J Pathol 174(2):390–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Doz E, Noulin N, Boichot E, Guénon I, Fick L, Le Bert M, Lagente V, Ryffel B, Schnyder B, Quesniaux VF, Couillin I (2008) Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol 180(2):1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Dunkin CS, Pleat JM, Gillespie PH, Tyler MP, Roberts AH, McGrouther DA (2007) Scarring occurs at a critical depth of skin injury: precise measurement in a graduated dermal scratch in human volunteers. Plast Reconstr Surg 119(6):1722–1732 discussion 1733-4

    Article  CAS  PubMed  Google Scholar 

  • Eckes B, Zigrino P, Kessler D, Holtkötter O, Shephard P, Mauch C, Krieg T (2000) Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol 19(4):325–332

    Article  CAS  PubMed  Google Scholar 

  • Eddy AA (2000) Molecular basis of renal fibrosis. Pediatr Nephrol 15(3–4):290–301

    Article  CAS  PubMed  Google Scholar 

  • Eghbali M, Tomek R, Sukhatme VP, Woods C, Bhambi B (1991) Differential effects of transforming growth factor-beta 1 and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors. Circ Res 69(2):483–490

    Article  CAS  PubMed  Google Scholar 

  • el Nahas AM, Muchaneta-Kubara EC, Essawy M, Soylemezoglu O (1997) Renal fibrosis: insights into pathogenesis and treatment. Int J Biochem Cell Biol 29(1):55–62

    Article  CAS  PubMed  Google Scholar 

  • Flanders KC, Major CD, Arabshahi A, Aburime EE, Okada MH, Fujii M, Blalock TD, Schultz GS, Sowers A, Anzano MA, Mitchell JB, Russo A, Roberts AB (2003) Interference with transforming growth factor-beta/ Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. Am J Pathol 163(6):2247–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanders KC, Sullivan CD, Fujii M, Sowers A, Anzano MA, Arabshahi A, Major C, Deng C, Russo A, Mitchell JB, Roberts AB (2002) Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 160(3):1057–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara M, Muragaki Y, Ooshima A (2005) Upregulation of transforming growth factor-beta1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity. Arch Dermatol Res 297(4):161–169

    Article  CAS  PubMed  Google Scholar 

  • Fukuda Y, Ishizaki M, Kudoh S, Kitaichi M, Yamanaka N (1998) Localization of matrix metalloproteinases-1, −2, and −9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases. Lab Investig 78(6):687–698

    CAS  PubMed  Google Scholar 

  • Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, Schnyder B, Akira S, Quesniaux VF, Lagente V, Ryffel B, Couillin I (2007) IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest 117(12):3786–3799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gharaee-Kermani M, Phan SH (1997) Lung interleukin-5 expression in murine bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 16(4):438–447

    Article  CAS  PubMed  Google Scholar 

  • Gozali MV, Zhou B (2015) Effective treatments of atrophic acne scars. J Clin Aesthet Dermatol 8(5):33–40

    PubMed  PubMed Central  Google Scholar 

  • Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS (1998) Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res 40(2):352–363

    Article  CAS  PubMed  Google Scholar 

  • Gressner AM, Weiskirchen R, Breitkopf K, Dooley S (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7:d793–d807

    Article  CAS  PubMed  Google Scholar 

  • Gäbele E, Mühlbauer M, Dorn C, Weiss TS, Froh M, Schnabl B, Wiest R, Schölmerich J, Obermeier F, Hellerbrand C (2008) Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem Biophys Res Commun 376(2):271–276

    Article  CAS  PubMed  Google Scholar 

  • Hein S, Arnon E, Kostin S, Schönburg M, Elsässer A, Polyakova V, Bauer EP, Klövekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991

    Article  PubMed  Google Scholar 

  • Heymans S, Lupu F, Terclavers S, Vanwetswinkel B, Herbert JM, Baker A, Collen D, Carmeliet P, Moons L (2005) Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 166(1):15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu M, Peled ZM, Chin GS, Liu W, Longaker MT (2001) Ontogeny of expression of transforming growth factor-beta 1 (TGF-beta 1), TGF-beta 3, and TGF-beta receptors I and II in fetal rat fibroblasts and skin. Plast Reconstr Surg 107(7):1787–1794 discussion 1795-6

    Article  CAS  PubMed  Google Scholar 

  • Huebener P, Schwabe RF (2013) Regulation of wound healing and organ fibrosis by toll-like receptors. Biochim Biophys Acta 1832(7):1005–1017

    Article  CAS  PubMed  Google Scholar 

  • Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ (1998) Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102(3):538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iredale JP, Goddard S, Murphy G, Benyon RC, Arthur MJ (1995) Tissue inhibitor of metalloproteinase-I and interstitial collagenase expression in autoimmune chronic active hepatitis and activated human hepatic lipocytes. Clin Sci (Lond) 89(1):75–81

    Article  CAS  Google Scholar 

  • Iredale JP, Murphy G, Hembry RM, Friedman SL, Arthur MJ (1992) Human hepatic lipocytes synthesize tissue inhibitor of metalloproteinases-1. Implications for regulation of matrix degradation in liver. J Clin Invest 90(1):282–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwanaga Y, Aoyama T, Kihara Y, Onozawa Y, Yoneda T, Sasayama S (2002) Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats. J Am Coll Cardiol 39(8):1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW (2005) Regulation of lung injury and repair by toll-like receptors and hyaluronan. Nat Med 11(11):1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Kagami S, Border WA, Miller DE, Noble NA (1994) Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest 93(6):2431–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP, Schirmacher P, Rose-John S, Zum Büschenfelde KH, Blessing M (1999) TGF-beta1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Am J Phys 276(4 Pt 1):G1059–G1068

    CAS  Google Scholar 

  • Kassiri Z, Oudit GY, Kandalam V, Awad A, Wang X, Ziou X, Maeda N, Herzenberg AM, Scholey JW (2009) Loss of TIMP3 enhances interstitial nephritis and fibrosis. J Am Soc Nephrol 20(6):1223–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Oda T, López-Guisa J, Wing D, Edwards DR, Soloway PD, Eddy AA (2001) TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 12(4):736–748

    CAS  PubMed  Google Scholar 

  • Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J (2001) Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 107(12):1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Böttinger EP, Klotman PE, Thorgeirsson SS (1996) Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Investig 74(6):991–1003

    CAS  PubMed  Google Scholar 

  • Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T (2002) Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106(1):130–135

    Article  CAS  PubMed  Google Scholar 

  • Lafuma C, El Nabout RA, Crechet F, Hovnanian A, Martin M (1994) Expression of 72-kDa gelatinase (MMP-2), collagenase (MMP-1), and tissue metalloproteinase inhibitor (TIMP) in primary pig skin fibroblast cultures derived from radiation-induced skin fibrosis. J Invest Dermatol 102(6):945–950

    Article  CAS  PubMed  Google Scholar 

  • Lakos G, Takagawa S, Chen SJ, Ferreira AM, Han G, Masuda K, Wang XJ, DiPietro LA, Varga J (2004) Targeted disruption of TGF-beta/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol 165(1):203–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126(4):1172–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Moine A, Flamand V, Demoor FX, Noël JC, Surquin M, Kiss R, Nahori MA, Pretolani M, Goldman M, Abramowicz D (1999) Critical roles for IL-4, IL-5, and eosinophils in chronic skin allograft rejection. J Clin Invest 103(12):1659–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, Senior RM, Elias JA (2001) Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 194(6):809–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotfi R, Eisenbacher J, Solgi G, Fuchs K, Yildiz T, Nienhaus C, Rojewski MT, Schrezenmeier H (2011) Human mesenchymal stem cells respond to native but not oxidized damage associated molecular pattern molecules from necrotic (tumor) material. Eur J Immunol 41(7):2021–2028

    Article  CAS  PubMed  Google Scholar 

  • Mao SA, Glorioso JM, Nyberg SL (2014) Liver regeneration. Transl Res 163(4):352–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K, Kinugawa S, Tsutsui H (2006) Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 47(4):711–717

    Article  CAS  PubMed  Google Scholar 

  • Mersmann J, Habeck K, Latsch K, Zimmermann R, Jacoby C, Fischer JW, Hartmann C, Schrader J, Kirschning CJ, Zacharowski K (2011) Left ventricular dilation in toll-like receptor 2 deficient mice after myocardial ischemia/reperfusion through defective scar formation. Basic Res Cardiol 106(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, Wang XX, Liu HZ, Sun W, Hu ZW (2011) Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol 187(6):3003–3014

    Article  CAS  PubMed  Google Scholar 

  • Mutsaers SE, Bishop JE, McGrouther G, Laurent GJ (1997) Mechanisms of tissue repair: from wound healing to fibrosis. Int J Biochem Cell Biol 29(1):5–17

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Nakajima HO, Salcher O, Dittiè AS, Dembowsky K, Jing S, Field LJ (2000) Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ Res 86(5):571–579

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Lauwers GY, Lau JY, Davis GL (2000) Interleukin 10 treatment reduces fibrosis in patients with chronic hepatitis C: a pilot trial of interferon nonresponders. Gastroenterology 118(4):655–660

    Article  CAS  PubMed  Google Scholar 

  • Occleston NL, Laverty HG, O’Kane S, Ferguson MW (2008) Prevention and reduction of scarring in the skin by transforming growth factor beta 3 (TGFbeta3): from laboratory discovery to clinical pharmaceutical. J Biomater Sci Polym Ed 19(8):1047–1063

    Article  CAS  PubMed  Google Scholar 

  • Okuda S, Languino LR, Ruoslahti E, Border WA (1990) Elevated expression of transforming growth factor-beta and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial extracellular matrix. J Clin Invest 86(2):453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong C, Wong C, Roberts CR, Teh HS, Jirik FR (1998) Anti-IL-4 treatment prevents dermal collagen deposition in the tight-skin mouse model of scleroderma. Eur J Immunol 28(9):2619–2629

    Article  CAS  PubMed  Google Scholar 

  • Oriente A, Fedarko NS, Pacocha SE, Huang SK, Lichtenstein LM, Essayan DM (2000) Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J Pharmacol Exp Ther 292(3):988–994

    CAS  PubMed  Google Scholar 

  • Pardo A, Selman M (2006) Matrix metalloproteases in aberrant fibrotic tissue remodeling. Proc Am Thorac Soc 3(4):383–388

    Article  CAS  PubMed  Google Scholar 

  • Paun A, Fox J, Balloy V, Chignard M, Qureshi ST, Haston CK (2010) Combined Tlr2 and Tlr4 deficiency increases radiation-induced pulmonary fibrosis in mice. Int J Radiat Oncol Biol Phys 77(4):1198–1205

    Article  CAS  PubMed  Google Scholar 

  • Peterson JT, Hallak H, Johnson L, Li H, O’Brien PM, Sliskovic DR, Bocan TM, Coker ML, Etoh T, Spinale FG (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103(18):2303–2309

    Article  CAS  PubMed  Google Scholar 

  • Piguet PF, Collart MA, Grau GE, Sappino AP, Vassalli P (1990) Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature 344(6263):245–247

    Article  CAS  PubMed  Google Scholar 

  • Piguet PF, Vesin C (1994) Treatment by human recombinant soluble TNF receptor of pulmonary fibrosis induced by bleomycin or silica in mice. Eur Respir J 7(3):515–518

    Article  CAS  PubMed  Google Scholar 

  • Pulskens WP, Rampanelli E, Teske GJ, Butter LM, Claessen N, Luirink IK, van der Poll T, Florquin S, Leemans JC (2010) TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol 21(8):1299–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Ramos J, de Lourdes Segura-Valdez M, Vanda B, Selman M, Pardo A (1999) Matrix metalloproteinases 2, 9, and 13, and tissue inhibitors of metalloproteinases 1 and 2 in experimental lung silicosis. Am J Respir Crit Care Med 160(4):1274–1282

    Article  PubMed  Google Scholar 

  • Raghu G, Brown KK, Costabel U, Cottin V, du Bois RM, Lasky JA, Thomeer M, Utz JP, Khandker RK, McDermott L, Fatenejad S (2008) Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am J Respir Crit Care Med 178(9):948–955

    Article  CAS  PubMed  Google Scholar 

  • Reiman RM, Thompson RW, Feng CG, Hari D, Knight R, Cheever AW, Rosenberg HF, Wynn TA (2006) Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect Immun 74(3):1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riad A, Jäger S, Sobirey M, Escher F, Yaulema-Riss A, Westermann D, Karatas A, Heimesaat MM, Bereswill S, Dragun D, Pauschinger M, Schultheiss HP, Tschöpe C (2008) Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol 180(10):6954–6961

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, Schlüter KD, Böhm M (2002) Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am J Physiol Heart Circ Physiol 283(3):H1253–H1262

    Article  CAS  PubMed  Google Scholar 

  • Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, Bou-Gharios G, Jeffery R, Iredale JP, Forbes SJ (2006) The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130(6):1807–1821

    Article  PubMed  Google Scholar 

  • Safadi R, Ohta M, Alvarez CE, Fiel MI, Bansal M, Mehal WZ, Friedman SL (2004) Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 127(3):870–882

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Yamamoto M, Shimosato T, Klinman DM (2010) Accelerated wound healing mediated by activation of toll-like receptor 9. Wound Repair Regen 18(6):586–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13(11):1324–1332

    Article  CAS  PubMed  Google Scholar 

  • Selman M, Ruiz V, Cabrera S, Segura L, Ramírez R, Barrios R, Pardo A (2000) TIMP-1, −2, −3, and −4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol 279(3):L562–L574

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Foreman DM, Ferguson MW (1992) Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet 339(8787):213–214

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Foreman DM, Ferguson MW (1995) Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 108(Pt 3):985–1002

    CAS  PubMed  Google Scholar 

  • Shek FW, Benyon RC (2004) How can transforming growth factor beta be targeted usefully to combat liver fibrosis? Eur J Gastroenterol Hepatol 16(2):123–126

    Article  CAS  PubMed  Google Scholar 

  • Sher A, Coffman RL, Hieny S, Scott P, Cheever AW (1990) Interleukin 5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proc Natl Acad Sci U S A 87(1):61–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiratori Y, Imazeki F, Moriyama M, Yano M, Arakawa Y, Yokosuka O, Kuroki T, Nishiguchi S, Sata M, Yamada G, Fujiyama S, Yoshida H, Omata M (2000) Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon therapy. Ann Intern Med 132(7):517–524

    Article  CAS  PubMed  Google Scholar 

  • Shishido T, Nozaki N, Yamaguchi S, Shibata Y, Nitobe J, Miyamoto T, Takahashi H, Arimoto T, Maeda K, Yamakawa M, Takeuchi O, Akira S, Takeishi Y, Kubota I (2003) Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction. Circulation 108(23):2905–2910

    Article  CAS  PubMed  Google Scholar 

  • Skuginna V, Lech M, Allam R, Ryu M, Clauss S, Susanti HE, Römmele C, Garlanda C, Mantovani A, Anders HJ (2011) Toll-like receptor signaling and SIGIRR in renal fibrosis upon unilateral ureteral obstruction. PLoS One 6(4):e19204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahara T, Furui K, Yata Y, Jin B, Zhang LP, Nambu S, Sato H, Seiki M, Watanabe A (1997) Dual expression of matrix metalloproteinase-2 and membrane-type 1-matrix metalloproteinase in fibrotic human livers. Hepatology 26(6):1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Timmers L, Sluijter JP, van Keulen JK, Hoefer IE, Nederhoff MG, Goumans MJ, Doevendans PA, van Echteld CJ, Joles JA, Quax PH, Piek JJ, Pasterkamp G, de Kleijn DP (2008) Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res 102(2):257–264

    Article  CAS  PubMed  Google Scholar 

  • Tokuda K, Kai H, Kuwahara F, Yasukawa H, Tahara N, Kudo H, Takemiya K, Koga M, Yamamoto T, Imaizumi T (2004) Pressure-independent effects of angiotensin II on hypertensive myocardial fibrosis. Hypertension 43(2):499–503

    Article  CAS  PubMed  Google Scholar 

  • Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanagi M, Katoh M, Yamamoto H, Tamaki K, Shimokawa H, Takeshita A (1998) Early induction of transforming growth factor-beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 32(2):273–279

    Article  CAS  PubMed  Google Scholar 

  • Ueberham E, Löw R, Ueberham U, Schönig K, Bujard H, Gebhardt R (2003) Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology 37(5):1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Ulrich D, Noah EM, von Heimburg D, Pallua N (2003) TIMP-1, MMP-2, MMP-9, and PIIINP as serum markers for skin fibrosis in patients following severe burn trauma. Plast Reconstr Surg 111(4):1423–1431

    Article  PubMed  Google Scholar 

  • Wang J, Hori K, Ding J, Huang Y, Kwan P, Ladak A, Tredget EE (2011) Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring. J Cell Physiol 226(5):1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Wenzel S, Taimor G, Piper HM, Schlüter KD (2001) Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-beta expression in adult ventricular cardiomyocytes. FASEB J 15(12):2291–2293

    Article  CAS  PubMed  Google Scholar 

  • Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, Wynn TA (2010) Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med 207(3):535–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4(8):583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117(3):524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208(7):1339–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Sato T, Beren J, Verthelyi D, Klinman DM (2011) The acceleration of wound healing in primates by the local administration of immunostimulatory CpG oligonucleotides. Biomaterials 32(18):4238–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Volk A, Petley T, Emmell E, Giles-Komar J, Shang X, Li J, Das AM, Shealy D, Griswold DE, Li L (2004) Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling. Cytokine 28(6):224–232

    Article  CAS  PubMed  Google Scholar 

  • Yang HZ, Wang JP, Mi S, Liu HZ, Cui B, Yan HM, Yan J, Li Z, Liu H, Hua F, Lu W, Hu ZW (2012) TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury. Am J Pathol 180(1):275–292

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Liu Y (2001) Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 159(4):1465–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshizaki A, Iwata Y, Komura K, Ogawa F, Hara T, Muroi E, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Tedder TF, Sato S (2008) CD19 regulates skin and lung fibrosis via toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am J Pathol 172(6):1650–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Leu SW, Shi L, Dedaj R, Zhao G, Garg HG, Shen L, Lien E, Fitzgerald KA, Shiedlin A, Shen H, Quinn DA, Hales CA (2010) TLR4 is a negative regulator in noninfectious lung inflammation. J Immunol 184(9):5308–5314

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103(6):779–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of Restore Burn and Wound Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Miller.

Ethics declarations

Funding

There is no funding to declare for this study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, R., Fell, M. & Pleat, J. A comparative analysis of the molecular basis of fibrosis between tissues. Comp Clin Pathol 28, 865–878 (2019). https://doi.org/10.1007/s00580-017-2400-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-017-2400-z

Keywords

Navigation