Skip to main content

Advertisement

Log in

Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)?

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Climate change may alter mycorrhizal communities, which impact ecosystem characteristics such as carbon sequestration processes. These impacts occur at a greater magnitude in Arctic ecosystems, where the climate is warming faster than in lower latitudes. Cassiope tetragona (L.) D. Don is an Arctic plant species in the Ericaceae family with a circumpolar range. C. tetragona has been reported to form ericoid mycorrhizal (ErM) as well as ectomycorrhizal (ECM) symbioses. In this study, the fungal taxa present within roots of C. tetragona plants collected from Svalbard were investigated using DNA metabarcoding. In light of ongoing climate change in the Arctic, the effects of artificial warming by open-top chambers (OTCs) on the fungal root community of C. tetragona were evaluated. We detected only a weak effect of warming by OTCs on the root-associated fungal communities that was masked by the spatial variation between sampling sites. The root fungal community of C. tetragona was dominated by fungal groups in the Basidiomycota traditionally classified as either saprotrophic or ECM symbionts, including the orders Sebacinales and Agaricales and the genera Clavaria, Cortinarius, and Mycena. Only a minor proportion of the operational taxonomic units (OTUs) could be annotated as ErM-forming fungi. This indicates that C. tetragona may be forming mycorrhizal symbioses with typically ECM-forming fungi, although no characteristic ECM root tips were observed. Previous studies have indicated that some saprophytic fungi may also be involved in biotrophic associations, but whether the saprotrophic fungi in the roots of C. tetragona are involved in biotrophic associations remains unclear. The need for more experimental and microscopy-based studies to reveal the nature of the fungal associations in C. tetragona roots is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anisimov O, Vaughan D, Callaghan T (2007) Polar regions (Arctic and Antarctic). In: Parry M, Canziani O, Palutikof J et al (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 653–685

    Google Scholar 

  • Aronesty E (2013) Comparison of sequencing utility programs. Open Bioinforma J 7:1–8. doi:10.2174/1875036201307010001

    Article  Google Scholar 

  • Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108. doi:10.1007/s00253-010-2585-4

    Article  CAS  PubMed  Google Scholar 

  • Bellemain E, Carlsen T, Brochmann C et al (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189. doi:10.1186/1471-2180-10-189

    Article  PubMed  PubMed Central  Google Scholar 

  • Birkebak JM, Mayor JR, Ryberg KM, Matheny PB (2013) A systematic, morphological and ecological overview of the Clavariaceae (Agaricales). Mycologia 105:896–911. doi:10.3852/12-070

    Article  PubMed  Google Scholar 

  • Blaalid R, Carlsen T, Kumar S et al (2012) Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol Ecol 21:1897–1908. doi:10.1111/j.1365-294X.2011.05214.x

    Article  PubMed  Google Scholar 

  • Blaalid R, Davey ML, Carlsen T et al (2014) Arctic root-associated fungal community composition reflects environmental filtering. Mol Ecol 23:649–659. doi:10.1111/mec.12622

    Article  PubMed  Google Scholar 

  • Blok D, Weijers S, Welker JM et al (2015) Deepened winter snow increases stem growth and alters stem δ 13 C and δ 15 N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra. Environ Res Lett 10:44008. doi:10.1088/1748-9326/10/4/044008

    Article  Google Scholar 

  • Bokhorst S, Huiskes A, Aerts R et al (2013) Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Glob Chang Biol 19:64–74. doi:10.1111/gcb.12028

    Article  PubMed  Google Scholar 

  • Botnen S, Vik U, Carlsen T et al (2014) Low host specificity of root-associated fungi at an Arctic site. Mol Ecol 23:975–985. doi:10.1111/mec.12646

    Article  PubMed  Google Scholar 

  • Bougoure DS, Parkin PI, Cairney JWG et al (2007) Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol 16:4624–4636. doi:10.1111/j.1365-294X.2007.03540.x

    Article  CAS  PubMed  Google Scholar 

  • Buizer B, Weijers S, van Bodegom PM et al (2012) Range shifts and global warming: ecological responses of Empetrum nigrum L. to experimental warming at its northern (high Arctic) and southern (Atlantic) geographical range margin. Environ Res Lett 7:25501. doi:10.1088/1748-9326/7/2/025501

    Article  Google Scholar 

  • Cairney JWG, Meharg AA (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740. doi:10.1046/j.1365-2389.2003.00555.x

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth0510-335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemmensen KE, Michelsen A, Jonasson S, Shaver GR (2006) Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol 171:391–404. doi:10.1111/j.1469-8137.2006.01778.x

    Article  PubMed  Google Scholar 

  • Davey ML, Heimdal R, Ohlson M, Kauserud H (2013) Host- and tissue-specificity of moss-associated Galerina and Mycena determined from amplicon pyrosequencing data. Fungal Ecol 6:179–186. doi:10.1016/j.funeco.2013.02.003

    Article  Google Scholar 

  • Davey M, Blaalid R, Vik U, et al (2015) Primary succession of Bistorta vivipara (L.) Delabre (Polygonaceae) root associated fungi mirrors plant succession in two glacial chronosequences. Environ Microbiol 17:n/a-n/a. doi:10.1111/1462–2920.12770

  • Deslippe JR, Hartmann M, Simard SW, Mohn WW (2012) Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol Ecol 82:303–315. doi:10.1111/j.1574-6941.2012.01350.x

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  • Elvebakk A (1994) A survey of the plant associations and alliances from Svalbard. J Veg Sci 5:791–802

    Article  Google Scholar 

  • Elvebakk A (1999) Bioclimatic delimitation and subdivision of the Arctic. In: Nordal I, Razzhivin VY (eds) The species concept in the High North—a panarctic flora initiative. Norwegian Academy of Science and Letters, Oslo, pp 81–112

    Google Scholar 

  • Englander L, Hull RJ (1980) Reciprocal transfer of nutrients between Ericaceous plants and a Clavaria sp. New Phytol 84:661–667

    Article  Google Scholar 

  • Feng S, Ho CH, Hu Q et al (2012) Evaluating observed and projected future climate changes for the Arctic using the Köppen-Trewartha climate classification. Clim Dyn 38:1359–1373. doi:10.1007/s00382-011-1020-6

    Article  Google Scholar 

  • Fujimura KE, Egger KN (2012) Host plant and environment influence community assembly of High Arctic root-associated fungal communities. Fungal Ecol 5:409–418. doi:10.1016/j.funeco.2011.12.010

    Article  Google Scholar 

  • Fujimura KE, Egger KN, Henry GH (2008) The effect of experimental warming on the root-associated fungal community of Salix arctica. Isme J 2:105–114. doi:10.1038/ismej.2007.89

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Geml J, Morgado L, Semenova T et al (2015) Long-term warming alters richness and composition of taxonomic and functional groups of Arctic fungi. FEMS Microbiol Ecol 91:1–13

    Article  Google Scholar 

  • Grau O, Rautio P, Heikkinen J et al (2010) An ericoid shrub plays a dual role in recruiting both pines and their fungal symbionts along primary succession gradients. Oikos 119:1727–1734. doi:10.1111/j.1600-0706.2010.18511.x

    Article  Google Scholar 

  • Grelet GA, Johnson D, Vralstad T et al (2010) New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol 188:210–222. doi:10.1111/j.1469-8137.2010.03560.x

    Article  CAS  PubMed  Google Scholar 

  • Hambleton S, Sigler L (2005) Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (=Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27

    Article  Google Scholar 

  • Henry GHR, Molau U (1997) Tundra plants and climate change: the International Tundra Experiment (ITEX). Glob Chang Biol 3:1–9. doi:10.1111/j.1365-2486.1997.gcb132.x

    Article  Google Scholar 

  • Hill MO, Gauch HG Jr (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hobbie JE, Hobbie EA (2006) 15N in symbiotic fungi and plants estimates nitrogen. Ecology 87:816–822

    Article  PubMed  Google Scholar 

  • Ihrmark K, Bödeker ITM, Cruz-Martinez K et al (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677. doi:10.1111/j.1574-6941.2012.01437.x

    Article  CAS  PubMed  Google Scholar 

  • Katenin A (1964) Mycorrhizae of Arctic plants. Probl Sev 8:148–154

    Google Scholar 

  • Katenin A (1972) Mycorrhiza in tundra plants of north-east of European part of the USSR. In: Tikhomirov B (ed) The vegetation of the far north of the USSR and its utilization. Botanical Institute Ameni BL Komorova, Leningrad, pp 1–140

    Google Scholar 

  • Kauserud H, Mathiesen C, Ohlson M (2008) High diversity of fungi associated with living parts of boreal forest bryophytes. Botany 86:1326–1333. doi:10.1139/B08-102

    Article  Google Scholar 

  • Kohn LM, Stasovski E (1990) The mycorrhizal status of plants at Alexandra Fjord, Ellesmere Island, Canada, a High Arctic site. Mycologia 82:23–35

    Article  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277. doi:10.1111/mec.12481

    Article  PubMed  Google Scholar 

  • Kruskal JB (1964a) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • Kruskal JB (1964b) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27. doi:10.1007/BF02289565

    Article  Google Scholar 

  • Kühdorf K, Münzenberger B, Begerow D et al (2014a) Sebacina sp. is a mycorrhizal partner of Comarostaphylis arbutoides (Ericaceae). Mycol Prog 13:733–744. doi:10.1007/s11557-013-0956-9

    Article  Google Scholar 

  • Kühdorf K, Münzenberger B, Begerow D, et al (2014b) Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae). Mycorrhiza 109–120. doi:10.1007/s00572–014–0590-7

  • Lindahl BD, Nilsson RH, Tedersoo L et al (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H-Y, Økland T, Halvorsen R (2008) Gradient analyses of forests ground vegetation and it’s relationship to environmental variables in five subtropical forest areas, S and SW China. Sommerfeltia 32:3–196

    Article  Google Scholar 

  • Mallik AU, Wdowiak JV, Cooper EJ (2011) Growth and reproductive responses of Cassiope tetragona, a circumpolar evergreen shrub, to experimentally delayed snowmelt. Arct Antarct Alp Res 43:404–409. doi:10.1657/1938-4246-43.3.404

    Article  Google Scholar 

  • Marion G, Henry G, Freckman D et al (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 3:20–32. doi:10.1111/j.1365-2486.1997.gcb136.x

    Article  Google Scholar 

  • Martos F, Dulormne M, Pailler T et al (2009) Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol 184:668–681. doi:10.1111/j.1469-8137.2009.02987.x

    Article  CAS  PubMed  Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S et al (1996) Leaf N-15 abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63. doi:10.1007/bf00328791

    Article  PubMed  Google Scholar 

  • Miller O Jr (1982) Higher fungi in Alaskan subarctic tundra and taiga plant communities. In: Laursen G, Ammirati J (eds) Arctic and alpine mycology, vol 1. University of Washington Press, Seattle, pp 123–149

    Google Scholar 

  • Miller O Jr, Laursen G (1974) Belowground fungal biomass on U.S. Tundra Biome sites at Barrow, Alaska. In: Holding A, Heal O, MacLean S, Flanagan P (eds) Soil organisms and decomposition in tundra. Swedish IBP Commitee, Stockholm, pp 151–158

    Google Scholar 

  • Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107. doi:10.1007/BF00038690

    Article  Google Scholar 

  • Morgado LN, Semenova TA, Welker JM et al (2015) Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska. Glob Chang Biol 21:959–972. doi:10.1111/gcb.12716

    Article  PubMed  Google Scholar 

  • Mundra S, Bahram M, Tedersoo L et al (2015a) Temporal variation of Bistorta vivipara-associated ectomycorrhizal fungal communities in the High Arctic. Mol Ecol 24:6289–6302. doi:10.1111/mec.13458

  • Mundra S, Halvorsen R, Kauserud H, et al (2015b) Arctic fungal communities associated with roots of Bistorta vivipara do not respond to the same fine-scale edaphic gradients as the aboveground vegetation. New Phytol 205:1587–1597

  • Mundra S, Halvorsen R, Kauserud H et al (2016) Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic. Microbiology 5:856–869. doi:10.1002/mbo3.375

    CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newsham KK, Upson R, Read DJ (2009) Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecol 2:10–20

    Article  Google Scholar 

  • Nguyen NH, Smith D, Peay K, Kennedy P (2014) Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol 205:1389–1393. doi:10.1111/nph.12923

    Article  PubMed  Google Scholar 

  • Oberwinkler F, Riess K, Bauer R et al (2013) Enigmatic Sebacinales. Mycol Prog 12:1–27. doi:10.1007/s11557-012-0880-4

    Article  Google Scholar 

  • Oberwinkler F, Riess K, Bauer R, Garnica S (2014) Morphology and molecules: the Sebacinales, a case study. Mycol Prog 13:445–470. doi:10.1007/s11557-014-0983-1

    Article  Google Scholar 

  • Ogura-Tsujita Y, Gebauer G, Hashimoto T et al (2009) Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc Biol Sci 276:761–767. doi:10.1098/rspb.2008.1225

    Article  CAS  PubMed  Google Scholar 

  • Økland RH (1990) Vegetation ecology: theory, methods and applications with reference to Fennoscandia. In: Sommerfeltia Supplementary, 1st edn. pp 1–233

  • Økland RH (1999) On the variation explained by ordination and constrained ordination axes. J Veg Sci 10:131–136. doi:10.2307/3237168

    Article  Google Scholar 

  • Økland RH, Eilertsen O (1993) Vegetation-environment relationships of boreal coniferous forests in the Solhomfjell area. Gjerstand, S Norway Sommerfeltia:1–254

  • Oksanen J, Blanchet FG, Friendly M, et al (2017) vegan: Community Ecology Package.

  • Park EJ, Lee WY (2013) In vitro symbiotic germination of myco-heterotrophic Gastrodia elata by Mycena species. Plant Biotechnol Rep 7:185–191. doi:10.1007/s11816-012-0248-x

    Article  CAS  Google Scholar 

  • Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil 244:41–53. doi:10.1023/A:1020289401610

    Article  CAS  Google Scholar 

  • Peters C, Basinger JF, Kaminskyj SGW (2011) Endorhizal fungi associated with vascular plants on Truelove Lowland, Devon Island, Nunavut, Canadian High Arctic. Arctic, Antarct Alp Res 43:73–81

    Article  Google Scholar 

  • Peterson JH, Læssøe T (2014) MycoKey 4.1. www.mycokey.com. Accessed January 2016.

  • Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374. doi:10.1006/anbo.1996.0044

    Article  CAS  Google Scholar 

  • Rønning O (1996) The flora of Svalbard. Norsk Polarinstitutt

  • Schadt CW, Rosling A (2015) Comment on “Global diversity and geography of soil fungi”. Science 348:1438–1438. doi:10.1126/science.aaa426980-

    Article  CAS  PubMed  Google Scholar 

  • Selosse MA, Setaro S, Glatard F et al (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878. doi:10.1111/j.1469-8137.2007.02064.x

    Article  CAS  PubMed  Google Scholar 

  • Semenchuk PR, Elberling B, Cooper EJ (2013) Snow cover and extreme winter warming events control flower abundance of some, but not all species in High Arctic Svalbard. Ecol Evol 3:2586–2599. doi:10.1002/ece3.648

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenova TA, Morgado LN, Welker JM et al (2015) Long-term experimental warming alters community composition of ascomycetes in Alaskan moist and dry arctic tundra. Mol Ecol 24:424–437. doi:10.1111/mec.13045

    Article  PubMed  Google Scholar 

  • Seviour RJ, Willing RR, Chilvers GA (1973) Basidiocarps associated with ericoid mycorrhizas. New Phytol 72:381–385. doi:10.1111/j.1469-8137.1973.tb02045.x

    Article  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis, Third edn. Academic Press

  • Strelkova A (1956) Mycorrhizae of plants of tundra and taiga in Taimyr. Bot Zhurnal Leningr 41:1161–1168

    Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Increasing shrub abundance in the Arctic. Nature 411:546–547. doi:10.1038/35079180

    Article  CAS  PubMed  Google Scholar 

  • Stutz R (1972) Survey of mycorrhizal plants. In: Bliss L (ed) Devon Island IPB Project: High Arctic ecosystem. University of Alberta, Edmonton, pp 214–216

    Google Scholar 

  • Sweet SK, Griffin KL, Steltzer H et al (2015) Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake. Glob Chang Biol 21:2394–2409. doi:10.1111/gcb.12852

    Article  PubMed  Google Scholar 

  • Tarnocai C, Canadell JC, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:1–11. doi:10.1029/2008GB003327

    Article  Google Scholar 

  • Tejesvi MV, Sauvola T, Pirttilä AM, Ruotsalainen AL (2013) Neighboring Deschampsia flexuosa and Trientalis europaea harbor contrasting root fungal endophytic communities. Mycorrhiza 23:1–10. doi:10.1007/s00572-012-0444-0

    Article  PubMed  Google Scholar 

  • Timling I, Walker DA, Nusbaum C et al (2014) Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol Ecol 23:3258–3272

    Article  CAS  PubMed  Google Scholar 

  • Treu R, Laursen GA, Stephenson SL et al (1996) Mycorrhizae from Denali National Park and Preserve, Alaska. Mycorrhiza 6:21–29

    Article  Google Scholar 

  • Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897

    Article  Google Scholar 

  • Van Son TC, Halvorsen R (2014) Multiple parallel ordinations: the importance of choice of ordination method and weighting of species abundance data. Sommerfeltia 37:1–27. doi:10.2478/som-2014-0001

    Article  Google Scholar 

  • Villarreal-Ruiz L, Neri-Luna C, Anderson IC, Alexander IJ (2012) In vitro interactions between ectomycorrhizal fungi and ericaceous plants. Symbiosis 56:67–75. doi:10.1007/s13199-012-0161-7

    Article  CAS  Google Scholar 

  • Vohnik M, Panek M, Fehrer J, Selosse M-A (2016) Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales). Mycorrhiza 26:831–846. doi:10.1007/s00572-016-0717-0

    Article  PubMed  Google Scholar 

  • Vrålstad T (2004) Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytol 164:7–10

    Article  Google Scholar 

  • Walker JF, Aldrich-Wolfe L, Riffel A et al (2011) Diverse helotiales associated with the roots of three species of arctic ericaceae provide no evidence for host specificity. New Phytol 191:515–527. doi:10.1111/j.1469-8137.2011.03703.x

    Article  PubMed  Google Scholar 

  • Weiss M, Sykorova Z, Garnica S et al (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One. doi:10.1371/journal.pone.0016793

    Google Scholar 

  • White TJ, Bruns S, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. pp 315–322

  • Zhang T, Xiang H-B, Zhang Y-Q et al (2013) Molecular analysis of fungal diversity associated with three bryophyte species in the Fildes Region, King George Island, maritime Antarctica. Extremophiles 17:757–765. doi:10.1007/s00792-013-0558-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The University of Oslo and UNIS are acknowledged for the financial support and for providing lab facilities, while the Research Council of Norway and Svalbard Science Forum are acknowledged for the travel support. Kevin Newsham, David Read, and Ulrik Sochting kindly provided microscopy pictures of Cassiope plant roots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelsey Erin Lorberau.

Electronic supplementary material

Fig S1

Global nonmetric multidimensional scaling (GNMDS) and detrended correspondence analysis (DCA) ordinations for operational taxonomic unit (OTU) – sample matrices based on (a, b) raw read abundances (c, d) raw read abundances converted to presence/absence, and (e, f) rarefied read abundances converted to presence/absence. The DCA ordinations show clear tongue effects yet confirm the pattern seen in the GNMDS ordinations. Samples from the same location group together and the samples are not separated by warming treatment on either of the first two axes. (GIF 48 kb)

High Resolution image (EPS 14 kb)

Fig S2

Micrograph of a Cassiope tetragona hair-root tip taken at 400 x magnification with a Leica DMRB microscope mounted with a Leica DFC420 digital camera. Root sample is unstained, mounted in water, and was collected from Isdammen, Svalbard in August 2014. There is a notable lack of mantle or Hartig net. Micrograph by Kelsey Lorberau. (PNG 489 kb)

Fig S3

Three Cassiope tetragona root micrographs collected from Endalen, Svalbard and stained with trypan blue. Lines indicate ErM hyphal coils. Micrographs courtesy of Kevin Newsham, David Read, and Ulrik Sochting, and taken at 400 x magnification with a Leica DMRB microscope mounted with a Leica DFC420 digital camera. (PNG 539 kb)

Table S1

(DOCX 13 kb)

Table S2

(DOCX 15 kb)

Table S3

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorberau, K.E., Botnen, S.S., Mundra, S. et al. Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)?. Mycorrhiza 27, 513–524 (2017). https://doi.org/10.1007/s00572-017-0767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-017-0767-y

Keywords

Navigation