Skip to main content

Advertisement

Log in

Phylogenetic and functional traits of ectomycorrhizal assemblages in top soil from different biogeographic regions and forest types

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Ectomycorrhizal (EM) fungal taxonomic, phylogenetic, and trait diversity (exploration types) were analyzed in beech and conifer forests along a north-to-south gradient in three biogeographic regions in Germany. The taxonomic community structures of the ectomycorrhizal assemblages in top soil were influenced by stand density and forest type, by biogeographic environmental factors (soil physical properties, temperature, and precipitation), and by nitrogen forms (amino acids, ammonium, and nitrate). While α-diversity did not differ between forest types, β-diversity increased, leading to higher γ-diversity on the landscape level when both forest types were present. The highest taxonomic diversity of EM was found in forests in cool, moist climate on clay and silty soils and the lowest in the forests in warm, dry climate on sandy soils. In the region with higher taxonomic diversity, phylogenetic clustering was found, but not trait clustering. In the warm region, trait clustering occurred despite neutral phylogenetic effects. These results suggest that different forest types and favorable environmental conditions in forests promote high EM species richness in top soil presumably with both high functional diversity and phylogenetic redundancy, while stressful environmental conditions lead to lower species richness and functional redundancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agerer R (1987-2012) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Schwäbisch Gmünd

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114. doi:10.1007/s005720100108

    Article  Google Scholar 

  • Agerer R, Hartmann A, Pritsch K, Raidl S, Schloter M, Verma R, Weigt R (2012) Plants and their ectomycorrhizosphere: cost and benefit of symbiotic soil organisms. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch H (eds) Growth and defence in plants. Springer, Heidelberg, pp 213–242

    Chapter  Google Scholar 

  • Avis PG, McLaughlin DJ, Dentinger BC, Reich PB (2003) Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol 160:239–253. doi:10.1046/j.1469-8137.2003.00865.x

    Article  Google Scholar 

  • Bahram M, Kõljalg U, Kohout P, Mirshahvaladi S, Tedersoo L (2013) Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza 23:11–19. doi:10.1007/s00572-012-0445-z

    Article  PubMed  Google Scholar 

  • Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463. doi:10.1111/nph.13206

    Article  CAS  PubMed  Google Scholar 

  • Boch S, Prati D, Mueller J, Socher S, Baumbach H, Buscot F, Gockel S, Hemp A, Hessenmoeller D, Kalko EKV, Linsenmair KE, Pfeiffer S, Pommer U, Schöning I, Schulze E-D, Seilwinder C, Weisser WW, Wells K, Fischer M (2013) High plant species richness indicates management-related disturbances rather than the conservation status of forests. Basic Appl Ecol 14:496–505. doi:10.1016/j.baae.2013.06.001

    Article  Google Scholar 

  • Bödeker ITM, Clemmensen KE, de Boer W, Martin F, Olson Å, Lindahl BD (2014) Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol 203:245–256. doi:10.1111/nph.12791

    Article  PubMed  Google Scholar 

  • Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus sylvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245. doi:10.1007/s00572-004-0313-6

    Article  PubMed  Google Scholar 

  • Cairney JWG (1992) Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycol Res 96:135–141. doi:10.1016/S0953-7562(09)80928-3

    Article  CAS  Google Scholar 

  • Cairney JWG (2011) Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil 344:51–71. doi:10.1007/s11104-011-0731-0

    Article  CAS  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618. doi:10.1126/science.1231923

    Article  CAS  PubMed  Google Scholar 

  • Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536. doi:10.1111/nph.13208

    Article  CAS  PubMed  Google Scholar 

  • Courty P-E, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319. doi:10.1111/j.1469-8137.2005.01401.x

    Article  CAS  PubMed  Google Scholar 

  • Courty P-E, Franc A, Pierrat J-C, Garbaye J (2008) Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801. doi:10.1128/AEM.01592-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113. doi:10.1111/j.1461-0248.2010.01494.x

    Article  PubMed  Google Scholar 

  • Danielsen L, Thürmer A, Meinicke P, Buée M, Morin E, Martin F, Pilate G, Daniel R, Polle A, Reich M (2012) Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities. Ecol Evol 2:1935–1948. doi:10.1002/ece3.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hansel F, Hemp A, Hessenmöller D, Korte G, Nieschulze J, Pfeiffer S, Prati D, Renner S, Schöning I, Schumacher U, Wells K, Buscot F, Kalko EKV, Linsenmair KE, Schulze ED, Weisser WW (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485. doi:10.1016/j.baae.2010.07.009

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24. doi:10.1007/s11104-005-3701-6

    Article  CAS  Google Scholar 

  • Goldmann K, Schöning I, Buscot F, Wubet T (2015) Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Front Microbiol 6:1300. doi:10.3389/fmicb.2015.01300

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldmann K, Schröter K, Pena R, Schöning I, Schrumpf M, Buscot F, Polle A, Wubet T (2016) Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Sci Rep 6:31439. doi:10.1038/srep31439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habib MT, Heller T, Polle A (2013) Molecular physiology of tree ectomycorrhizal interactions. In: Eshel A, Beeckman T (eds) Plant roots: the hidden half. CRC Press, Boca Raton, pp 39-1–39-21

    Chapter  Google Scholar 

  • Hammer O, Harper D, Ryan P (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontol Electron 4:9–17

    Google Scholar 

  • Helmisaari H-S, Ostonen I, Lõhmus K, Derome J, Lindroos AJ, Merilä P, Nöjd P (2009) Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Tree Physiol 29:445–456. doi:10.1093/treephys/tpn042

    Article  CAS  PubMed  Google Scholar 

  • Herold N, Schöning I, Berner D, Haslwimmer H, Kandeler E, Michalzik B, Schrumpf M (2014) Vertical gradients of potential enzyme activities in soil profiles of European beech, Norway spruce and Scots pine dominated forest sites. Pedobiologia 57:181–189. doi:10.1016/j.pedobi.2014.03.003

    Article  Google Scholar 

  • Hobbie EA, Agerer R(2009) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83. doi:10.1007/s11104-009-0032-z

    Article  Google Scholar 

  • Horton BM, Glen M, Davidson NJ, Ratkowsky D, Close DC, Wardlaw TJ, Mohammed C(2013) Temperate eucalypt forest decline is linked to altered ectomycorrhizal communities mediated by soil chemistry. For Ecol Manag 302:329–337, doi:10.1016/j.foreco.2013.04.006

    Article  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440. doi:10.1111/j.1469-8137.2007.02016.x

    Article  CAS  PubMed  Google Scholar 

  • Kivlin SN, Winston GC, Goulden ML, Treseder KK (2014) Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecol 12:14–25. doi:10.1016/j.funeco.2014.04.004

    Article  Google Scholar 

  • Kranabetter JM, Durall DM, MacKenzie WH (2009) Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Mycorrhiza 19:99–111. doi:10.1007/s00572-008-0208-z

    Article  CAS  PubMed  Google Scholar 

  • Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21:297–308. doi:10.1007/s00572-010-0338-y

    Article  PubMed  Google Scholar 

  • Lang C, Finkeldey R, Polle A (2013) Spatial patterns of ectomycorrhizal assemblages in a monospecific forest in relation to host tree genotype. Front Plant Sci 4:103. doi:10.3389/fpls.2013.00103

    Article  PubMed  PubMed Central  Google Scholar 

  • Leberecht M, Tu J, Polle A (2016) Acid and calcareous soils affect nitrogen nutrition and organic nitrogen uptake by beech (Fagus sylvatica L.) under drought, and their ectomycorrhizal community structure. Plant Soil. doi:10.1007/s11104-016-2956-4

    Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115. doi:10.1890/0012-9658(2002)083[0104:BEFCCO]2.0.CO;2

    Article  Google Scholar 

  • Luo Z-B, Li K, Gai Y, Gobel C, Wildhagen H, Jiang XN, Feussner I, Rennenberg H, Polle A (2011) The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environ Exper Bot 72:304–311. doi:10.1016/j.envexpbot.2011.04.008

    Article  CAS  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748. doi:10.1126/science.1143082

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 7:e36695. doi:10.1371/journal.pone.0036695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moeller HV, Peay KG, Fukami T (2014) Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient. FEMS Microbiol Ecol 87:797–806. doi:10.1111/1574-6941.12265

    Article  CAS  PubMed  Google Scholar 

  • Montgomery DC, Peck EA (1992) Introduction to Linear Regression Analysis. Wiley, New York

    Google Scholar 

  • Naimi B (2015) usdm: uncertainty analysis for species distribution models. R package version 1., pp 1–15, http://CRAN.R-project.org/package=usdm

    Google Scholar 

  • O’Hara KL, Gersonde RF (2004) Stocking control concepts in uneven-aged silviculture. Forestry 77:131–143. doi:10.1093/forestry/77.2.131

    Article  Google Scholar 

  • Pena R, Polle A (2014) Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME J 8:321–330. doi:10.1038/ismej.2013.158

    Article  CAS  PubMed  Google Scholar 

  • Pena R, Offermann C, Simon J, Naumann PS, Gessler A, Holst J, Dannenmann M, Mayer H, Kögel-Knabner I, Rennenberg H, Polle A (2010) Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Appl Environ Microbiol 76:1831–1841. doi:10.1128/AEM.01703-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena R, Tejedor J, Zeller B, Dannenmann M, Polle A (2013) Interspecific temporal and spatial differences in the acquisition of litter-derived nitrogen by ectomycorrhizal fungal assemblages. New Phytol 199:520–528. doi:10.1111/nph.12272

    Article  CAS  PubMed  Google Scholar 

  • Phillips LA, Ward V, Jones MD (2014) Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J 8:699–713. doi:10.1038/ismej.2013.195

    Article  CAS  PubMed  Google Scholar 

  • Pickles BJ, Genney DR, Anderson IC, Alexander IJ (2012) Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structured by competitive interactions. Mol Ecol 21:5110–5123. doi:10.1111/j.1365-294X.2012.05739.x

    Article  PubMed  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL https://www.R-project.org/

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492. doi:10.1046/j.1469-8137.2003.00704.x

    Article  Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783. doi:10.1046/j.1469-8137.2003.00829.x

    Article  CAS  Google Scholar 

  • Schall P, Ammer C (2013) Can land use intensity be reliably quantified by using a single self-thinning relationship? Ecol Appl 23:675–677

    Article  PubMed  Google Scholar 

  • Solly EF, Schöning I, Herold N, Trumbore SE, Schrumpf M (2015) No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil 393:273–282. doi:10.1007/s11104-015-2492-7

    Article  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035. doi:10.1073/pnas.0404206101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99. doi:10.1016/j.fbr.2013.09.001

    Article  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. doi:10.1007/s00572-009-0274-x

    Article  PubMed  Google Scholar 

  • Tedersoo L, Naadel T, Bahram M, Pritsch K, Buegger F, Leal M, Kõljalg U, Põldmaa K (2012) Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest. New Phytol 195:832–843. doi:10.1111/j.1469-8137.2012.04217.x

    Article  CAS  PubMed  Google Scholar 

  • Teste FP, Lalibert E, Lambers H, Auer Y, Kramer S, Kandeler E (2016) Mycorrhizal fungal productivity and scavenging in nutrient-poor yet hyperdiverse plant communities: are the symbionts functionally ephemeral? Soil Biol. Biogeosciences 92:119–132, doi:10.1016/j.soilbio.2015.09.021

    CAS  Google Scholar 

  • Tibbett M, Sanders FE, Minto SJ, Dowell M, Cairney JWG (1998) Utilization of organic nitrogen by ectomycorrhizal fungi (Hebeloma spp.) of arctic and temperate origin. Mycol Res 102:1525–1532. doi:10.1017/S0953756298006649

    Article  CAS  Google Scholar 

  • Tilsner J, Kassner N, Struck C, Lohaus G (2005) Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta 221:328–338. doi:10.1007/s00425-004-1446-8

    Article  CAS  PubMed  Google Scholar 

  • Toberman H, Freeman C, Evans C, Fenner N, Artz RR (2008) Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. FEMS Microbiol Ecol 66:426–436. doi:10.1111/j.1574-6941.2008.00560.x

    Article  CAS  PubMed  Google Scholar 

  • Trocha LK, Kałucka I, Stasińska M, Nowak W, Dabert M, Leski T, Rudawska M, Oleksyn J (2012) Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees. Mycorrhiza 22:121–134. doi:10.1007/s00572-011-0387-x

    Article  PubMed  Google Scholar 

  • Valtanen K, Eissfeller V, Beyer F, Hertel D, Scheu S, Polle A (2014) Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza 24:645–650. doi:10.1007/s00572-014-0581-8

    Article  CAS  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S-plus, 4th edn. Springer, New York

    Book  Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270. doi:10.1073/pnas.1320054111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100. doi:10.1093/bioinformatics/btn358

    Article  CAS  PubMed  Google Scholar 

  • Weigt RB, Raidl S, Verma R, Agerer R (2011) Exploration type-specific standard values of extramatrical mycelium—a step towards quantifying ectomycorrhizal space occupation and biomass in natural soil. Mycol Prog 11:287–297. doi:10.1007/s11557-011-0750-5

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelgard DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Wilkinson MT, Humphreys GS (2005) Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates. Aust J Soil Res 43:767–779

    Article  CAS  Google Scholar 

  • Wubet T, Christ S, Schöning I, Boch S, Gawlich M, Schnabel B, Fischer M, Buscot F (2012) Differences in soil fungal communities between European beech (Fagus sylvatica L.) dominated forests are related to soil and understory vegetation. PLoS One 7:e47500. doi:10.1371/journal.pone.0047500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavišić A, Nassal P, Yang N, Heuck C, Spohn M, Marhan S, Pena R,Kandeler E, Polle A (2016) Phosphorus availabilities in beech (Fagus sylvatica L.) forests impose habitat filtering on ectomycorrhizal communities and impact on tree nutrition. Soil Biol Biochem 98:127–137

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Schulz and T. Klein for the help with the field work and G. Lehmann for technical assistance. We thank the managers of the three Exploratories, Kirsten Reichel-Jung, Swen Renner, Katrin Hartwich, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Christiane Fischer and Simone Pfeiffer for giving support through the central office; Michael Owonibi for managing the central database; and Karl Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, François Buscot, Ernst-Detlef Schulze, Wolfgang W. Weisser, and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen, and Brandenburg (according to § 72 BbgNatSchG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Polle.

Ethics declarations

Funding

The work has been funded by the Deutsche Forschungsgemeinschaft DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” under grant numbers PO362/18-3 (A. Polle) and PE 2256/1-1 (R. Pena).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

Table S1 Ectomycorrhzial fungi, accession numbers of their ITS sequences and exploration types. Table S2: PCA Scores and loadings for different categories of environmenal variables. Stars indicate significant principle components (PC). Table S3: List of environmental variables after collinearity analyses. Table S4: Scores for the tested explanatory variables (vectors in NMDS). (XLSX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pena, R., Lang, C., Lohaus, G. et al. Phylogenetic and functional traits of ectomycorrhizal assemblages in top soil from different biogeographic regions and forest types. Mycorrhiza 27, 233–245 (2017). https://doi.org/10.1007/s00572-016-0742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0742-z

Keywords

Navigation