Skip to main content
Log in

Pseudomonas fluorescens C7R12 type III secretion system impacts mycorrhization of Medicago truncatula and associated microbial communities

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Type three secretion systems (T3SSs) mediate cell-to-cell interactions between Gram-negative bacteria and eukaryotes. We hypothesized that fluorescent pseudomonads harboring T3SS (T3SS+) would be beneficial to arbuscular mycorrhizal symbiosis because non-pathogenic fluorescent pseudomonads have been previously shown to be much more abundant in mycorrhizal than in non-mycorrhizal roots. We tested this hypothesis by comparing mycorrhization and the associated rhizosphere microbial communities of Medicago truncatula grown in a non-sterile soil inoculated with either the T3SS+ mycorrhiza helper bacterium Pseudomonas fluorescens (C7R12) or a T3SS− mutant of the strain. Results showed that the bacterial secretion system was responsible for the promotion of mycorrhization because root colonization by arbuscular mycorrhizal fungi was not promoted by the T3SS− mutant. The observed T3SS-mediated promotion of mycorrhization was associated with changes in the rhizosphere bacterial communities and the increased occurrence of Claroidoglomeraceae within the intraradical arbuscular mycorrhizal fungi. Furthermore, both pseudomonad strains promoted the host-free growth of a model arbuscular mycorrhizal fungus in vitro, suggesting that T3SS-mediated promotion of mycorrhization occurs during plant-fungal interactions rather than during the pre-symbiotic phase of fungal growth. Taken together, these data provide evidence for the involvement of T3SS in promoting arbuscular mycorrhization by a model fluorescent pseudomonad and suggest the implication of interactions between the bacterium and mycorrhizas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Arriagada C, Manquel D, Cornejo P, Soto J, Sampedro I, Ocampo J (2012) Effects of the co-inoculation with saprobe and mycorrhizal fungi on Vaccinium corymbosum growth and some soil enzymatic activities. J Soil Sci Plant Nutr 12(2):283–294

  • Bailly X, Olivieri I, de Mita S, Cleyet-Marel JC, Béna G (2006) Recombination and selection shape the molecular diversity pattern of nitrogen-fixing Sinorhizobium sp. associated to Medicago. Mol Ecol 15:2719–2734

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) ‘Candidatus glomeribacter gigasporarum’ gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Ann Rev Microbiol 63:363–383

    Article  CAS  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  PubMed  Google Scholar 

  • Cusano AM, Burlinson P, Deveau A, Vion P, Uroz S, Preston GM, Frey-Klett P (2011) Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environ Microbiol Rep 3:203–210

    Article  CAS  PubMed  Google Scholar 

  • Dennis JJ, Zylstra GJ (1998) Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol 64:2710–2715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eparvier A, Lemanceau P, Alabouvette C (1991) Population dynamics of non-pathogenic Fusarium and fluorescent Pseudomonas strains in rockwool, a substratum for soilless culture. FEMS Microbiol Ecol 86:177–184

    Article  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytopathol 176:22–36

    Article  CAS  Google Scholar 

  • Galán JE, Lara-Tejero M, Marlovits TC, Wagner S (2014) Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Ann Rev Microbiol 68:415–438

    Article  Google Scholar 

  • Garbaye J (1994) Mycorrhiza helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Gubry-Rangin C, Béna G, Cleyet-Marel JC, Brunel B (2013) Definition and evolution of a new symbiovar, sv. rigiduloides, efficiently nodulating Medicago species. Syst Appl Microbiol 36:490–496

    Article  PubMed  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Katzen F, Becker A, Ielmini V, Oddo CG, Ielpi L (1999) New mobilizable vectors suitable for gene replacement in Gram-negative bacteria and their use in mapping of the 3′ end of Xanthomonas campestris pv. Campestris gum operon. Appl Environ Microbiol 65:278–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  • Lackner G, Moebius N, Hertweck C (2010) Endofungal bacterium controls its host by an hrp type III secretion system. ISME J 5:252–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemanceau P, Alabouvette C (1991) Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Protect 10:279–286

    Article  Google Scholar 

  • Macho AP (2016) Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. New Phytol 210:51–57

    Article  PubMed  Google Scholar 

  • Mazurier S, Lemunier M, Siblot S, Mougel C, Lemanceau P (2004) Distribution and diversity of type III secretion system-like genes in saprophytic and phytopathogenic fluorescent pseudomonads. FEMS Micobiol Ecol 49:455–467

    Article  CAS  Google Scholar 

  • Mirleau P, Delorme S, Philippot L, Meyer J-M, Mazurier S, Lemanceau P (2000) Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol Ecol 34:35–44

    Article  CAS  PubMed  Google Scholar 

  • Mondy S, Lenglet A, Beury-Cirou A, Libanga C, Ratet P, Faure D, Dessaux Y (2014) An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Mol Ecol 23:4846–4861

    Article  PubMed  Google Scholar 

  • Moora M, Berger S, Davison J, Öpik M, Bommarco R, Bruelheide H, Kühn I, Kunin WE, Metsis M, Rortais A, Vanatoa A, Vanatoa E, Stout JC, Truusa M, Westphal C, Zobel M, Walther G-R (2011) Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. J Biogeogr 38(7):1305–1317

  • Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 170:165–175

    Article  CAS  PubMed  Google Scholar 

  • Naumann M, Schüßler A, Bonfante P (2010) The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J 4:862–871

    Article  PubMed  Google Scholar 

  • Nelson MS, Sadowski MJ (2015) Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front Plant Sci 6:491

    Article  PubMed  PubMed Central  Google Scholar 

  • Normand P, Ponsonnet C, Nesme X, Neyra M, Simonet P (1996) ITS analysis of prokaryotes. In: DL A, van Elsas JD, de Bruijn EI (eds) Molecular microbial ecology manual. Kluwer Academic, Amsterdam, the Netherlands, pp. 1–12

    Google Scholar 

  • Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK (2013) An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol 15:1870–1881

    Article  CAS  PubMed  Google Scholar 

  • Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of bacterial groups preferentially associated with mycorrhized roots of Medicago truncatula. Appl Environ Microbiol 73:913–921

    Article  CAS  PubMed  Google Scholar 

  • Offre P, Pivato B, Mazurier S, Siblot S, Berta G, Lemanceau P, Mougel C (2008) Microdiversity of Burkholderiales associated with mycorrhizal and non-mycorrhizal roots of Medicago truncatula. FEMS Microbiol Ecol 65:180–192

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchett FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHM, Wagner H (2012) Vegan: community ecology package. R Package 2.0.3 Downloaded from http://CRAN.R-project.org/package=vegan

  • Oliveira RP, Castro PML, Dodd JC, Vosatka M (2006) Different native arbuscular mycorrhizal fungi influence the coexistence of two plant species in a highly alkaline anthropogenic sediment. Plant Soil 287:209–221

    Article  CAS  Google Scholar 

  • Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol 176:197–210

    Article  CAS  PubMed  Google Scholar 

  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhization as influenced by the bacteria, fungi and host-plant. Mycorrhiza 19:81–90

    Article  PubMed  Google Scholar 

  • Rangin C, Brunel B, Cleyet-Marel JC, Perrineau MM, Béna G (2008) Effects of Medicago truncatula genetic diversity, rhizobial competition and strain effectiveness on the diversity of a natural Sinorhizobium spp. community. Appl Environ Microbiol 74:5653–5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjard L, Lejon PHD, Mougel C, Scherer L, Merdinoglu D, Chaussod R (2003) Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol 5:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Rezzonico F, Binder C, Défago G, Moënne-Loccoz Y (2005) The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic chromista Pythium ultimum and promotes cucumber protection. MPMI 18:991–1001

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanchez L, Weidmann S, Arnould C, Bernard AR, Gianinazzi S, Gianinazzi-Pearson V (2005) Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Plant Physiol 139:1065–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheublin TR, Sanders IR, Keel C, Van Der Meer JR (2010) Characterisation of microbial communities colonizing the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4:752–763

    Article  PubMed  Google Scholar 

  • Sequerra J, Marmeisse R, Valla G, Normand P, Capellano A, Moiroud A (1997) Taxonomic position and intraspecific variability of the nodule forming Penicillium nodositatum inferred from RFLP analysis of the ribosomal intergenic spacer and random amplified polymorphic DNA. Mycol Res 101:465–472

    Article  CAS  Google Scholar 

  • Singh BK, Nunan N, Ridgway KP, McNicol J, Young JPY, Daniell TJ, Prosser J, Millar P (2008) Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environ Microbiol 10:534–541

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Torres-Cortés G, Ghignone S, Bonfante P, Schüßler A (2015) Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: transkingdom gene transfer in an ancient mycoplasma-fungus association. Proc Natl Acad Sci U S A 112:7785–7790

    Article  PubMed  PubMed Central  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA Presse, Paris, France, pp. 217–221

    Google Scholar 

  • Van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  CAS  PubMed  Google Scholar 

  • Vestergard M, Henry F, Rangel-Castro JI, Michelsen A, Prosser JI, Christensen S (2008) Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting. FEMS Microbiol Ecol 64:78–89

    Article  PubMed  Google Scholar 

  • Viollet A, Corberand T, Mougel C, Robin A, Lemanceau P, Mazurier S (2011) Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. FEMS Micobiol Ecol 75:457–467

    Article  CAS  Google Scholar 

  • Warmink JA, van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J 2:887–900

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Regional Council of Burgundy, RCB (Dijon, France), and supported by a doctoral grant to A. Viollet by “Conseil Régional de Bourgogne” and INRA (EA, SPE). The authors are grateful to Thérèse Corberand, Catherine Barraud, and Jerôme Manufacier for technical assistance and to Diana Warwick for correcting the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Mazurier.

Electronic supplementary material

ESM 1

(PDF 77 kb)

ESM 2

(PDF 118 kb)

ESM 3

(PDF 67 kb)

ESM 4

(PDF 293 kb)

ESM 5

(PDF 303 kb)

ESM 6

(PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viollet, A., Pivato, B., Mougel, C. et al. Pseudomonas fluorescens C7R12 type III secretion system impacts mycorrhization of Medicago truncatula and associated microbial communities. Mycorrhiza 27, 23–33 (2017). https://doi.org/10.1007/s00572-016-0730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0730-3

Keywords

Navigation