Skip to main content
Log in

Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Ectomycorrhizal fungi (EcMF) typically colonize nursery seedlings, but nutritional and growth effects of these communities are only partly understood. To examine these effects, Picea glauca seedlings collected from a tree nursery naturally colonized by three dominant EcMF were divided between fertilized and unfertilized treatments. After one growing season seedlings were harvested, ectomycorrhizas identified using DNA sequencing, and seedlings analyzed for leaf nutrient concentration and content, and biomass parameters. EcMF community structure–nutrient interactions were tested using nonmetric multidimensional scaling (NMDS) combined with vector analysis of foliar nutrients and biomass. We identified three dominant species: Amphinema sp., Atheliaceae sp., and Thelephora terrestris. NMDS + envfit revealed significant community effects on seedling nutrition that differed with fertilization treatment. PERMANOVA and regression analyses uncovered significant species effects on host nutrient concentration, content, and stoichiometry. Amphinema sp. had a significant positive effect on phosphorus (P), calcium and zinc concentration, and P content; in contrast, T. terrestris had a negative effect on P concentration. In the unfertilized treatment, percent abundance of the Amphinema sp. negatively affected foliar nitrogen (N) concentration but not content, and reduced foliar N/P. In fertilized seedlings, Amphinema sp. was positively related to foliar concentrations of N, magnesium, and boron, and both concentration and content of manganese, and Atheliaceae sp. had a negative relationship with P content. Findings shed light on the community and species effects on seedling condition, revealing clear functional differences among dominants. The approach used should be scalable to explore function in more complex communities composed of unculturable EcMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agerer R (1987–2008) Color atlas of Ectomycorrhizae. Einhorn-Verlag. Schwäbisch-Gmünd, Germany

  • Allen M, Swenson W, Querejeta J, Egerton-Warburton L, Treseder K (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Ann Rev Phytopathol 41:271–303

    Article  CAS  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Arnolds E (1991) Decline of ectomycorrhizal fungi in Europe. Agric Ecosyst Environ 35:209–244

    Article  Google Scholar 

  • Baxter JW, Dighton J (2001) Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host–symbiont culture conditions. New Phytol 152:139–149

    Article  Google Scholar 

  • Blevins D, Lukaszewski K (1994) Proposed physiologic functions of boron in plants pertinent to animal and human metabolism. Environ Health Perspect 102:31–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blevins D, Lukaszewski K (1998) Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49:481–500

    Article  CAS  PubMed  Google Scholar 

  • Bolaños L, Lukaszewski K, Bonilla I, Blevins D (2004) Why boron? Plant Physiol Biochem 42:907–912

    Article  PubMed  Google Scholar 

  • Bollen GJ (1972) A comparison of the in vitro antifungal spectra of thiophanates and benomyl. Neth J Plant Pathol 78:55–64

    Article  CAS  Google Scholar 

  • Courty P-E, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  • Croghan C (1984) Survey for mycorrhizal fungi in Lake States tree nurseries. Mycologia 76:951–953

    Article  Google Scholar 

  • Danielson R (1984) Ectomycorrhiza formation by the operculate Discomycete Sphaerosporella brunnea (Pezizales). Mycologia 76:454–461

    Article  Google Scholar 

  • Danielson R, Visser S (1990) The mycorrhizal and nodulation status of container-grown trees and shrubs reared in commercial nurseries. Can J For Res 20:609–614

    Article  Google Scholar 

  • Dixon RK, Hiol-Hiol F (1992) Mineral nutrition of Pinus caribaea and Eucalyptus camaldulensis seedlings inoculated with Pisolithus tinctorius and Thelephora terrestris. Commun Soil Sci Plant Anal 23:1387–1396

    Article  CAS  Google Scholar 

  • Ericsson T (1995) Growth and shoot:root ratio of seedlings in relation to nutrient availability. Plant Soil 168–169:205–214

    Article  Google Scholar 

  • Ericsson T, Kähr M (1995) Growth and nutrition of birch seedlings at varied relative addition rates of magnesium. Tree Physiol 15:85–93

    Article  CAS  PubMed  Google Scholar 

  • Fisher R, Binkley D (2000) Ecology and management of forest soils, 3rd edn. Wiley-Blackwell Inc, New York City

    Google Scholar 

  • Flykt E, Timonen S, Pennanen T (2008) Variation of ectomycorrhizal colonization in Norway spruce seedlings in Finnish forest nurseries. Silva Fenn 42:571–585

    Article  Google Scholar 

  • Gardes M, Bruns T (1993) ITS primers with enhanced specificity for basidiomycetes—applications to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, White TJ, Fortin JA, Bruns TD, Taylor JW (1991) Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can J Bot 69:180–190

    Article  CAS  Google Scholar 

  • George E, Romheld V, Marschner H (1994) Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Manthey J, Crowley DE, Luster DG (ed) Biochemistry of metal micronutrients in the rhizosphere. CRC Press, Inc., Boca Raton, p 93–109

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbascular mycorrhizal infections in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Hawkins BJ, Burgess D, Mitchell AK (2005) Growth and nutrient dynamics of western hemlock with conventional or exponential greenhouse fertilization and planting in different fertility conditions. Can J For Res 35:1002–1016

    Article  CAS  Google Scholar 

  • Hu H, Sparks D (1991) Zinc deficiency inhibits chlorophyll synthesis and gas exchange in ‘Stuart’ pecan. Hortscience 26:267–268

    CAS  Google Scholar 

  • Huang C, Schulte E (1985) Digestion of plant tissue for analysis by ICP emission spectroscopy. Commun Soil Sci Plant 16:943–958

    Article  CAS  Google Scholar 

  • Johnson N, Graham J, Smith F (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Jonsson LM, Nilsson M-C, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364

    Article  Google Scholar 

  • Karst J, Marczak L, Jones M, Turkington R (2008) The mutualism-parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysis. Ecology 89:1032–1042

    Article  PubMed  Google Scholar 

  • Karst J, Hoeksema JD, Jones MD, Turkington R (2011) Parsing the roles of abiotic and biotic factors in Douglas-fir seedling growth. Pedobiologia 54:273–280

    Article  Google Scholar 

  • Kernaghan G, Widden P, Bergeron Y, Légaré S, Par D (2003) Biotic and abiotic factors affecting ectomycorrhizal diversity in boreal mixed-woods. Oikos 102(3):497–504

    Article  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  PubMed  Google Scholar 

  • Kranabetter J (2004) Ectomycorrhizal community effects on hybrid spruce seedling growth and nutrition in clearcuts. Can J Bot 82:983–991

    Article  Google Scholar 

  • Krasowski M, Owens J, Tackaberry L, Massicotte H (1999) Above- and below-ground growth of white spruce seedlings with roots divided into different substrates with or without controlled-release fertilizer. Plant Soil 217:131–143

    Article  Google Scholar 

  • Kummel M, Salant S (2006) The economics of mutualisms: optimal utilization of mycorrhizal mutualistic partners by plants. Ecology 87:892–902

    Article  PubMed  Google Scholar 

  • Landeweert R, Hoffland E, Finlay R, Kuyper T, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 15:248–254

    Article  Google Scholar 

  • Lehto T, Lavola A, Kallio E, Aphalo P (2004) Boron uptake by ectomycorrhizas of silver birch. Mycorrhiza 14:209–212

    Article  CAS  PubMed  Google Scholar 

  • Lehto T, Ruuhola T, Dell B (2010) Boron in forest trees and forest ecosystems. For Ecol Manag 260:2053–2069

    Article  Google Scholar 

  • Lilleskov EA (2005) How do composition, structure, and function of mycorrhizal fungal communities respond to nitrogen deposition and ozone exposure? In: Dighton J, White JF, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. Taylor & Francis, Boca Raton

    Google Scholar 

  • Lilleskov E, Fahey T, Horton T, Lovett J (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Article  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183

    Article  Google Scholar 

  • McAlister JA, Timmer VR (1998) Nutrient enrichment of white spruce seedlings during nursery culture and initial plantation establishment. Tree Physiol 18:196–202

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • McDonald JH (2014) Handbook of biological statistics, 3rd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  • Menkis A, Vasiliauskas R, Tayler A, Stenlid J, Finlay R (2005) Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems assessed by morphotyping, direct sequencing, and mycelial isolation. Mycorrhiza 13:33–41

    Article  Google Scholar 

  • Mitchell RJ, Cox GS, Dixon RK, Garrett HE, Sander IL (1984) Inoculation of three Quercus species with eleven isolates of ectomycorrhizal fungi. II. Foliar nutrient content and isolate effectiveness. For Sci 30:563–572

    Google Scholar 

  • Mitchell R, Garrett H, Cox G, Atalay A, Dixon R (1987) Boron fertilization, ectomycorrhizal colonization, and the growth of Pinus echinata seedlings. Can J For Res 17:1153–1156

    Article  CAS  Google Scholar 

  • Mitchell RJ, Garrett HE, Cox GS, Atalay A (1990) Boron and ectomycorrhizal influences on mineral nutrition of container‐grown Pinus echinata mill. J Plant Nutr 13:1555–1574

    Article  CAS  Google Scholar 

  • Nienstaedt H, Zasada JC (1990) White spruce. Silvics N Am 1:389–442

    Google Scholar 

  • Oksanen J (2013) Multivariate analysis of ecological communities in R: vegan tutorial. Oulu Yliopisto, Oulu, http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf

    Google Scholar 

  • Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos M, Stevens H, Wagner H (2012) vegan: Community Ecology Package. R package version 2.0-3. http://CRAN.R-project.org/package=vegan

  • Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–281

    Article  CAS  PubMed  Google Scholar 

  • Polle A, Chakrabarti K, Chakrabarti S, Seifert F, Schramel P, Rennenberg H (1992) Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies) tress. Plant Physiol 99:1084–1089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poznanovic SK, Lilleskov EA, Webster CR (2014) Sharing rotting wood in the shade: ectomycorrhizal communities of co-occurring birch and hemlock seedlings. Mycorrhiza 25:153–164. doi:10.1007/s00572-014-0597-0

    Article  PubMed  Google Scholar 

  • Quoreshi A, Timmer V (1998) Exponential fertilization increases nutrient uptake and ectomycorrhizal development of black spruce seedlings. Can J For Res 28:674–682

  • Richter D, Bruhn J (1993) Mycorrhizal fungus colonization of Pinus resinosa transplanted on northern hardwood clearcuts. Soil Biol Biochem 25:355–369

    Article  Google Scholar 

  • Rincón A, Parladé J, Pera J (2005) Effects of ectomycorrhizal inoculation and the type of substrate on mycorrhization, growth, and nutrition of containerized Pinus pinea L. seedlings produced in a commercial nursery. Ann For Sci 63:1–6

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier Ltd, New York City

    Google Scholar 

  • Teichler-Zallen D (1969) The effects of manganese on chloroplast structure and photosynthetic ability of Chlamydomonas reinhardi. Plant Physiol 44:701–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timmer VR (1997) Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites. New For 13:279–299

    Article  Google Scholar 

  • Trappe J (1977) Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu Rev Phytopathol 15:203–222

    Article  Google Scholar 

  • Velmala SM, Rajala T, Haapanen M, Taylor AFS, Pennanen T (2013) Genetic host–tree effects on the ectomycorrhizal community and root characteristics of Norway spruce. Mycorrhiza 23:21–33

    Article  CAS  PubMed  Google Scholar 

  • Velmala SM, Rajala T, Heinonsalo J, Taylor AF, Pennanen T (2014) Profiling functions of ectomycorrhizal diversity and root structuring in seedlings of Norway spruce (Picea abies) with fast- and slow- growing phenotypes. New Phytol 201:610–622

    Article  CAS  PubMed  Google Scholar 

  • Walker RF, Walker RF, McLaughlin SB, Amundsen CC (2003) Interactive effects of mycorrhization and fertilization on growth, nutrition, and water relations of sweet birch. J Sustain For 17:55–80

    Article  Google Scholar 

  • Wallander H (1995) A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. Plant Soil 168:243–248

    Article  Google Scholar 

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–187

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322

    Google Scholar 

Download references

Acknowledgments

We would like to thank Christy Makuck and the US Forest Service J.W. Toumey Nursery staff for providing us with the seedlings used in the present study; Urmas Kõljalg for assistance with implementation of species hypotheses; Justina Silva, Jesse Barta, and Nick Holmes for their assistance; and Amy Marcarelli, Dana Richter, Heljä-Sisko Helmisaari, and Diane Haase for feedback on this manuscript. Financial support for this work was provided by US Forest Service, Northern Research Station; USDA National Research Initiative Competitive Grant 2006-35107-17228; Michigan Technological University Ecosystem Science Center; and the EU-US Atlantis program for support for AJS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik A. Lilleskov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, A.J.H., Potvin, L.R. & Lilleskov, E.A. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition. Mycorrhiza 25, 649–662 (2015). https://doi.org/10.1007/s00572-015-0640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0640-9

Keywords

Navigation