Skip to main content

Advertisement

Log in

Large and variable genome size unrelated to serpentine adaptation but supportive of cryptic sexuality in Cenococcum geophilum

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Estimations of genome size and its variation can provide valuable information regarding the genetic diversity of organisms and their adaptation potential to heterogeneous environments. We used flow cytometry to characterize the variation in genome size among 40 isolates of Cenococcum geophilum, an ectomycorrhizal fungus with a wide ecological and geographical distribution, obtained from two serpentine and two non-serpentine sites in Portugal. Besides determining the genome size and its intraspecies variation, we wanted to assess whether a relationship exists between genome size and the edaphic background of the C. geophilum isolates. Our results reveal C. geophilum to have one of the largest genome sizes so far measured in the Ascomycota, with a mean haploid genome size estimate of 0.208 pg (203 Mbp). However, no relationship was found between genome size and the edaphic background of the sampled isolates, indicating genetic and demographic processes to be more important for shaping the genome size variation in this species than environmental selection. The detection of variation in ploidy level among our isolates, including a single individual with both presumed haploid and diploid nuclei, provides supportive evidence for a possible cryptic sexual or parasexual cycle in C. geophilum (although other mechanisms may have caused this variation). The existence of such a cycle would have wide significance, explaining the high levels of genetic diversity and likelihood of recombination previously reported in this species, and adds to the increasing number of studies suggesting sexual cycles in previously assumed asexual fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albertin W, Marullo P (2012) Polyploidy in fungi: evolution after whole-genome duplication. Proc R Soc B 279:2497–2509

    Article  PubMed  Google Scholar 

  • Albertin W, Marullo P, Aigle M, Bourgais A, Bely M, Dillmann C, De Vienne D, Sicard D (2009) Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: towards a new domesticated species. J Evol Biol 22:2157–2170

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson CL, Kubisiak TL, Nelson CD, Smith JA, Davis JM (2010) Genome size variation in the pine fusiform rust pathogen Cronartium quercuum f.sp. fusiforme as determined by flow cytometry. Mycologia 102:1295–1302

    Article  PubMed  Google Scholar 

  • Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol S 36:243–266

    Google Scholar 

  • Codón AC, Benítez T, Korhola M (1998) Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Appl Microbiol Biot 49:154–163

    Article  Google Scholar 

  • Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, dePamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    Article  CAS  PubMed  Google Scholar 

  • Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A (2011) Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol 24:1135–1153

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák M, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82(Suppl A):17–26

    Article  Google Scholar 

  • Douhan GW, Rizzo DM (2005) Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol 166:263–271

    Article  CAS  PubMed  Google Scholar 

  • Douhan GW, Martin DP, Rizzo DM (2007) Using the putative asexual fungus Cenococcum geophilum as a model to test how species concepts influence recombination analyses using sequence data from multiple loci. Curr Genet 52:191–201

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Toiran LM, Agueda B (2007) Fruit bodies of Cenococcum geophilum. Mycotaxon 100:109–114

    Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves SC, Portugal A, Gonçalves MT, Vieira R, Martins-Loução MA, Freitas H (2007) Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza 17:677–686

    Article  PubMed  Google Scholar 

  • Gonçalves SC, Martins-Loução MA, Freitas H (2009) Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19:221–230

    Article  PubMed  Google Scholar 

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (2007) Eukaryotic genome size databases. Nucl Acids Res 35:D332–D338

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hijri M, Sanders JR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163

    Article  CAS  PubMed  Google Scholar 

  • Hilton C, Markie D, Corner B, Rikkerink E, Poulter R (1985) Heat shock induces chromosome loss in the yeast Candida albicans. Mol Gen Genet 200:162–168

    Article  CAS  PubMed  Google Scholar 

  • Hosny M, Gianinazzi-Pearson V, Dulieu H (1998) Nuclear DNA content of 11 fungal species in Glomales. Genome 41:422–428

    Article  CAS  Google Scholar 

  • Hu G, Wang J, Choi J et al (2011) Variation in chromosome copy number influences the virulence of Cryptococcus neoformans and occurs in isolates from AIDS patients. BMC Genomics 12:526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ibrahim AS, Magee BB, Sheppard DC, Yang M, Kauffman S, Becker J, Edwards JE Jr, Magee PT (2005) Effects of ploidy and mating type on virulence of Candida albicans. Infect Immun 73:7366–7374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Kelkar YD, Ochman H (2012) Causes and consequences of genome expansion in fungi. Genome Biol Evol 4:13–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolář F, Fér T, Štech M, Trávníček P, Dušková E, Schönswetter P, Suda J (2012) Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae). PLoS One 7:e39988

    Article  PubMed Central  PubMed  Google Scholar 

  • Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    Article  PubMed  Google Scholar 

  • Kudo N, Kimura Y (2001) Flow cytometric evidence for endopolyploidy in seedlings of some Brassica species. Theor App Genet 102:104–110

    Article  CAS  Google Scholar 

  • Kullman B (2002) Nuclear DNA content, life cycle and ploidy in two Neottiella species (Pezizales, Ascomycetes). Persoonia 18:103–115

    Google Scholar 

  • Kullman B, Tamm H, Kullman K (2005) Fungal genome size database. http://www.zbi.ee/fungal-genomesize

  • LoBuglio KF (1999) Cenococcum. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi: Key genera in profile. Springer, Berlin, pp 287–309

    Chapter  Google Scholar 

  • LoBuglio KF, Taylor J (2002) Recombination and genetic differentiation in the mycorrhizal fungus Cenococcum geophilum Fr. Mycologia 94:772–780

    Article  PubMed  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888

    Article  CAS  PubMed  Google Scholar 

  • Ma LJ, Ibrahim AS, Skory C et al (2009) Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genetics 5:e1000549

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman CM, Fuller HT, Dyer PS (2009) Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457:471–474

    Article  PubMed  Google Scholar 

  • Panaccione DG, Sheets NL, Miller SP, Cumming JR (2001) Diversity of Cenococcum geophilum isolates from serpentine and non-serpentine soils. Mycologia 93:645–652

    Article  CAS  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737

    Article  CAS  PubMed  Google Scholar 

  • Poláková S, Blume C, Zárate JA, Mentel M, Jørck-Ramberg D, Stenderup J, Piskur J (2009) Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc Natl Acad Sci USA 106:2688–2693

    Article  PubMed  Google Scholar 

  • Pontecorvo G, Roper JA, Forbes E (1953) Genetic recombination without sexual reproduction in Aspergillus niger. J Gen Microbiol 8:198–210

    Article  CAS  PubMed  Google Scholar 

  • Portugal A, Gonçalves SC, Vieira R, Freitas H (2002) Chromosome number in the ectomycorrhizal fungus Cenococcum geophilum from ultramafic soils of NE Portugal. Nucleus 45:14–18

    Google Scholar 

  • Proctor J (1999) Toxins, nutrient shortage and droughts: the serpentine challenge. Trends Ecol Evol 14:334–335

    Article  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nature 10:417–430

    CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Sędzielewska K, Fuchs J, Temsch E, Baronian K, Watzke R, Kunze G (2011) Estimation of the Glomus intraradices nuclear DNA content. New Phytol 192:794–797

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  PubMed  Google Scholar 

  • Spatafora JW, Owensby CA, Douhan GW, Boehm EWA, Schoch CL (2012) Phylogenetic placement of the ectomycorrhizal genus Cenococcum in Gloniaceae (Dothideomycetes). Mycologia 104:758–765

    Article  PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Fisher MC (1999) The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37:197–246

    Article  CAS  PubMed  Google Scholar 

  • Trappe JM (1964) Mycorrhizal hosts and distribution of Cenococcum graniforme. Lloydia 27:100–106

    Google Scholar 

  • Weber E (1992) Untersuchungen zu Fortpflanzung und Ploidie verschiedener Ascomyceten. Biblioth Mycol 140:1–186

    Google Scholar 

  • Welker DL, Williams KL (1980) Mitotic arrest and chromosome doubling using thiabendazole, cambendazole, nocodazole and ben late in the slime mould Dictyostelium discoideum. J Gen Microbiol 116:397–407

    CAS  Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor JWE (1990) Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In: Innis N, Gelfand D, Sninsky J, White T (eds) PCR—protocols and applications—a laboratory manual. Academic, New York, pp 315–322

    Google Scholar 

  • Whitney KD, Garland T Jr (2010) Did genetic drift drive increases in genome complexity? PLoS Genet 6:e1001080

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu BY, Nara K, Hogetsu T (2005) Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol 165:285–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Martina Peter for providing us with the C. geophilum Cg 1.58 reference isolate and Dr. Catarina Moura for her help with the isolation of C. geophilum from soil samples. This work was supported by research grant PTDC/BIA-BEC/100733/2008, funded by the European Union and the Fundação para a Ciência e a Tecnologia, awarded to Ludo Muller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludo A. H. Muller.

Additional information

Elizabeth C. Bourne and Diogo Mina contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourne, E.C., Mina, D., Gonçalves, S.C. et al. Large and variable genome size unrelated to serpentine adaptation but supportive of cryptic sexuality in Cenococcum geophilum . Mycorrhiza 24, 13–20 (2014). https://doi.org/10.1007/s00572-013-0501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0501-3

Keywords

Navigation