Skip to main content
Log in

Dielectrophoretic effect on droplet dynamic behaviors in microchannels

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Dielectrophoresis is of particular interest in droplet manipulation because of its ability to manipulate droplets based on their unique dielectric properties. With the help of different kinds of electrodes, the droplet dynamic behaviors can be manipulated to complete various tasks. In this work, both the experimental and numerical simulation methods are applied to find out a way to slow down the velocity of the droplets which is very helpful for droplets detection. For the experimental part, the microchannels are embedded with various kinds of electrodes near their microchannel walls instead of being arranged in the microchannel, and the direct current voltages are applied to the electrodes to generate a prescribed electric field intensity gradient in the longitudinal direction. A more accurate simulation model is made to analyze the mechanisms of the dielectric effect on the droplet dynamic behaviors in detail. The dynamic behaviors and dielectric characteristics of the microdroplets are investigated by studying the moving velocity, the deformation, the dielectrophoretic force and distributions of the electric field intensity. According to the results presented herein, both the dielectrophoretic force and interfacial tension have significant effects on the droplet dynamic behaviors. The method proposed in this work can manipulate the droplet velocity efficiently, and the velocity of the droplets can be decreased to one-fifth of the initial velocity. Therefore, it is important to focus on this method to make a contribution to droplet non-damage detection in biological and chemical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahn K, Kerbage C, Hunt TP et al (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett 88(2):24104

    Article  Google Scholar 

  • Andrew C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4(4):299–309

    Article  Google Scholar 

  • Aubry N, Singh P (2006) Control of electrostatic particle-particle interactions in dielectrophoresis. Euro Phys Lett 74(4):623–629

    Article  Google Scholar 

  • Bakhtina NA, Korvink JG (2014) Microfluidic laboratories for C. elegans enhance fundamental studies in biology. RSC Adv 4(9):4691–4709

    Article  Google Scholar 

  • Baret JC, Miller OJ, Taly V et al (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858

    Article  Google Scholar 

  • Collier CM, Hill KA, Holzman JF (2013) A dielectrophoresis microjet for on-chip technologies. RSC Adv 3(45):23309–23316

    Article  Google Scholar 

  • Daunay B, Lambert P, Jalabert L, Kumemura M, Renaudot R, Agache V, Fujita H (2012) Effect of substrate wettability in liquid dielectrophoresis (LDEP) based droplet generation: theoretical analysis and experimental confirmation. Lab Chip 12(2):361–368

    Article  Google Scholar 

  • Docoslis A, Kalogerakis N, Behie LA (1999) Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells. Cytotechnology 30(1–3):133–142

    Article  Google Scholar 

  • Fidalgo LM, Abell C, Huck W (2007) Surface-induced droplet fusion in microfluidic devices. Lab Chip 7(8):984–986

    Article  Google Scholar 

  • Fuhr G, Hagedorn R, Muller T (1991) Asynchronous traveling-wave induced linear motion of living cells. Stud Biophys 140(2):79–102

    Google Scholar 

  • Gascoyne PR, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, McConaghy C, Becker FF, Andrews C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4(4):299–309

    Article  Google Scholar 

  • Gupta R, Baldock SJ, Carreras P, Fielden PR, Goddard NJ, Mohr S, Razavi BS, Treves Brown BJ (2011) A microfluidic device for self-synchronised production of droplets. Lab Chip 11(23):4052–4056

    Article  Google Scholar 

  • Ikeda I, Monjushiro H, Watarai H (2005) Measurement of dielectrophoretic mobility of single micro-particles in a flow channel. Analyst 130:1340–1342

    Article  Google Scholar 

  • Im DJ, Noh J, Moon D, Kang IS (2011) Electrophoresis of a charged droplet in a dielectric liquid for droplet actuation. Anal Chem 83(13):5168–5174

    Article  Google Scholar 

  • Jones TB, Jones TB (2005) Electromechanics of particles. Cambridge University Press, Cambridge

    Google Scholar 

  • Jose BM, Cubaud T (2012) Droplet arrangement and coalescence in diverging/converging microchannels. Microfluid Nanofluid 12(5):687–696

    Article  Google Scholar 

  • Kadaksham A, Singh TJ, Aubry N (2004) Dynamics of electrorheological suspensions subjected to spatially nonuniform electric fields. J Fluid Eng 126(2):170–179

    Article  Google Scholar 

  • Klein J (2013) Hydration lubrication. Friction 1(1):1–23

    Article  Google Scholar 

  • Leclerc E, Kinoshita H, Fujii T, Barthès-Biesel D (2012) Transient flow of microcapsules through convergent–divergent microchannels. Microfluid Nanofluid 12(5):761–770

    Article  Google Scholar 

  • Lewin PL, Wang P, Swaffield DJ (2008) A model for bubble motion in non-uniform electric fields. 16th IEEE International Conference on Dielectric Liquids, ICDL 2008, Poitiers, France. IEEE 50–53

  • Liu D, Guo YC, Lin WY (2013) Simulations of mixing processes after coalescence of binary momentum-less droplets. Sci China Technol Sci 56(7):1607–1617

    Article  Google Scholar 

  • Liu L, Xie C, Chen B et al (2016) A new method for the interaction between multiple DEP particles: iterative dipole moment method. Microsyst Technol 22(9):2223–2232

    Article  Google Scholar 

  • Luo J, Guo D, Luo JB (2011a) Numerical simulation of bubble dynamics in a micro-channel under a nonuniform electric field. Electrophoresis 32(3–4):414–422

    Google Scholar 

  • Luo J, Qi LH, Zhou JM, Xiao Y, Yang F (2011b) Study on stable delivery of charged uniform droplets for freeform fabrication of metal parts. Sci China Technol Sci 54(7):1833–1840

    Article  Google Scholar 

  • Lv P, Zhu X, Ji A (2016) Design of a micro manipulation device for cell microinjection. Microsyst Technol 1–10. doi:10.1007/s00542-016-3072-3

  • Mukhopadhyay R (2006) Diving into droplets. Anal Chem 78(5):1401–1404

    Article  Google Scholar 

  • Olsson E, Kreiss G, Zahedi S (2007) A conservative level set method for two phase flow II. J Comput Phys 225(1):785–807

    Article  MathSciNet  MATH  Google Scholar 

  • Pit AM, Duits MHG, Mugele F (2015a) Droplet manipulations in two phase flow microfluidics. Micromachines 6(11):1768–1793

    Article  Google Scholar 

  • Pit AM, de Ruiter R, Kumar A et al (2015b) High-throughput sorting of drops in microfluidic chips using electric capacitance. Biomicrofluidics 9(4):044116

    Article  Google Scholar 

  • Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14(19):3710–3718

    Article  Google Scholar 

  • Shia-Yen T, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    Article  Google Scholar 

  • Singh P, Aubry N (2005) Trapping force on a finite-sized particle in a dielectrophoretic cage. Phys Rev E 72(1):016602

    Article  Google Scholar 

  • Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angewandte Chem Int Ed 42(7):768–772

    Article  Google Scholar 

  • Stone HA, Kim S (2001) Microfluidics: basic issues, applications, and challenges. AIChE J 47(6):1250–1254

    Article  Google Scholar 

  • Tarn MD, Peyman SA, Pamme N (2013) Simultaneous trapping of magnetic and diamagnetic particle plugs for separations and bioassays. RSC Adv 3(20):7209–7214

    Article  Google Scholar 

  • Washizu M, Jones TB (1994) Multipolar dielectrophoretic force calculation. Electrostatics 33:187–198

    Article  Google Scholar 

  • Watarai H, Sakamoto T, Tsukahara S (1997) In situ measurement of dielectrophoretic mobility of single polystyrene microparticles. Langmuir 13:2417–2420

    Article  Google Scholar 

  • Wootton R, Demello AJ (2012) Microfluidics: analog-to-digital drug screening. Nature 483(7387):43–44

    Article  Google Scholar 

  • Zagnoni M, Cooper JM (2009) On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size. Lab Chip 9:2652–2658

    Article  Google Scholar 

Download references

Acknowledgements

The work is financially supported by National Natural Science Foundation of China (No. 51375255, No. 51605079), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51321092, No. 51621064), the Fundamental Research Funds for the Central Universities (No. 852037), China Postdoctoral Science Foundation (No. 2016M591424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Guo, D. & Wen, S.Z. Dielectrophoretic effect on droplet dynamic behaviors in microchannels. Microsyst Technol 23, 4841–4851 (2017). https://doi.org/10.1007/s00542-017-3362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3362-4

Keywords

Navigation