Skip to main content
Log in

Facile fabrication of helical microfluidic channel based on rope coiling effect

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A rapid and simple fabrication approach to achieve helical microfluidic channels with circular cross section using template-assisted method is proposed in this article based on rope coiling effect in the extrusion process of a desktop 3D printer. Rope coil effect is a common phenomenon in the falling process of a slender string of viscous fluid and is used to fabricate helical microstructures served as the templates in the sacrificial template-assisted method, which holds great promise to fabricate micro-channels with desired vascular architectures. The helical microstructures are fabricated with the high viscous PVA (Polyvinyl alcohol) paste extruded out of the nozzle orifice from a certain falling height. After the PDMS block embedded with PVA helical template has been fabricated, the template would then be removed by melting in hot water easily to obtain the microfluidic channels. Two major processing parameters, falling height and flow rate are studied in relation to two main geometric features of helical structures: coil diameter and wire diameter. Besides, the dimension and the shape of helical microstructures are further studied for fabrication of microfluidic channels with varying geometric parameters. The presented method facilitates the rapid and convenient construction of three-dimensional (3D) helical microfluidic channels for a wide variety of lab-on-chip applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asthana A, Kim KO, Perumal J, Kim DM, Kim DP (2009) Facile single step fabrication of microchannels with varying size. Lab Chip 9(8):1138

    Article  Google Scholar 

  • Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267

    Article  Google Scholar 

  • Bellini A (2002) Fused deposition of ceramics: a comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design

  • Bloomstein T, Ehrlich D (1992) Laser-chemical three-dimensional writing for microelectromechanics and application to standard-cell microfluidics. J Vac Sci Technol B 10(6):2671

    Article  Google Scholar 

  • Brun PT, Audoly B, Ribe NM, Eaves TS, Lister JR (2015) Liquid ropes: a geometrical model for thin viscous jet instabilities. Phys Rev Lett 114(17):174501

    Article  Google Scholar 

  • Choi CH, Yi H, Hwang S, Weitz DA, Lee CS (2011) Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow. Lab Chip 11(8):1477

    Article  Google Scholar 

  • Dean RN, Nordine PC, Christodoulou CG (2000) 3-D helical THz antennas. Microw Opt Technol Lett 24(2):106

    Article  Google Scholar 

  • Delendik K, Emeliantchik I, Litomin A, Rumyantsev V, Voitik O (2003) Aluminium oxide microchannel plates. Nucl Phys B Proc Suppl 125:394

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem 70(23):4974

    Article  Google Scholar 

  • Esser-Kahn AP, Thakre PR, Dong H, Patrick JF, Vlasko-Vlasov VK, Sottos NR, Moore JS, White SR (2011) Three-dimensional microvascular fiber-reinforced composites. Adv Mater 23(32):3654. doi:10.1002/adma.201100933

    Article  Google Scholar 

  • Farahani RD, Chizari K, Therriault D (2014) Three-dimensional printing of freeform helical microstructures: a review. Nanoscale 6(18):10470

    Article  Google Scholar 

  • Guerin L, Bossel M, Demierre M, Calmes S, Renaud P (1997) Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic. In: Transducers, vol 97, pp 1419–1422

  • Habibi M, Ribe N, Bonn D (2007) Coiling of elastic ropes. Phys Rev Lett 99(15):154302

    Article  Google Scholar 

  • He S, Chen F, Yang Q, Liu K, Shan C, Bian H, Liu H, Meng X, Si J, Zhao Y (2012) Facile fabrication of true three-dimensional microcoils inside fused silica by a femtosecond laser. J Micromech Microeng 22(22):105017

    Article  Google Scholar 

  • Jo BH, Van Lerberghe LM, Motsegood KM, Beebe DJ (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromechanical Syst 9(1):76

    Article  Google Scholar 

  • Kirchhoff MR, Güttler J, Waldschik A, Feldmann M, Büttgenbach S (2008) Revised fabrication process for micro-fluxgate-magnetometers: Usage of electrodepositable photoresist. Microelectron Eng 85(5):1047

    Article  Google Scholar 

  • Ladd C, So JH, Muth J, Dickey MD (2013) 3D printing of free standing liquid metal microstructures. Adv Mater 25(36):5081

    Article  Google Scholar 

  • Lebel LL, Aissa B, Khakani MAE, Therriault D (2010) Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils. Adv Mater 22(5):592

    Article  Google Scholar 

  • Liao Y, Song J, Li E, Luo Y, Shen Y, Chen D, Cheng Y, Xu Z, Sugioka K, Midorikawa K (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12(4):746

    Article  Google Scholar 

  • Luelf T, Bremer C, Wessling M (2016) Rope coiling spinning of curled and meandering hollow fiber membranes. J Membr Sci 12:1246

    Google Scholar 

  • Mahadevan L, Ryu WS, Samuel AD (1998) Fluid ‘rope trick’ investigated. Nature 392(6672):140

    Article  Google Scholar 

  • Maleki M, Habibi M, Golestanian R, Ribe N, Bonn D (2004) Liquid rope coiling on a solid surface. Phys Rev Lett 93(21):214502

    Article  Google Scholar 

  • Monzón MD, Gibson I, Benítez AN, Lorenzo L, Hernández PM, Marrero MD (2013) Process and material behavior modeling for a new design of micro-additive fused deposition. Int J Adv Manuf Technol 67(9–12):2717

    Article  Google Scholar 

  • Nguyen DT, Leho YT, Esser-Kahn AP (2012) A three-dimensional microvascular gas exchange unit for carbon dioxide capture. Lab Chip 12:1246. doi:10.1039/C2LC00033D

    Article  Google Scholar 

  • Parekh DP, Ladd C, Panich L, Moussa K, Dickey MD (2016) Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices. Lab Chip 16(10):1812

    Article  Google Scholar 

  • Passieux R, Guthrie L, Rad SH, Lvesque M, Therriault D (2015) Instability-assisted direct writing of microstructured fibers featuring sacrificial bonds. Adv Mater 27(24):3676

    Article  Google Scholar 

  • Ribe NM (2004) Coiling of viscous jets. Proc R Soc Lond Ser A 460(2051):3223

    Article  MathSciNet  MATH  Google Scholar 

  • Ribe NM, Habibi M, Bonn D (2012) Liquid Rope Coiling. Annu Rev Fluid Mech 44(8):249

    Article  MathSciNet  MATH  Google Scholar 

  • Ribe NM, Huppert HE, Hallworth MA, Habibi M, Bonn D (2006) Multiple coexisting states of liquid rope coiling. J Fluid Mech 555:275

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts MA, Rossier JS, Bercier P, Girault H (1997) UV laser machined polymer substrates for the development of microdiagnostic systems. Anal Chem 69(11):2035

    Article  Google Scholar 

  • Saggiomo V, Velders AH (2015) Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv Sci. doi:10.1002/advs.201500125

    Google Scholar 

  • Shariatpanahi SP, Bonn D, Ejtehadi MR, Zad AI (2016) Electrical bending instability in electrospinning visco-elastic solutions. J Polym Sci Part B Polym Phys 54(11):1036

    Article  Google Scholar 

  • Shengguan H, Feng C, Keyin L, Qing Y, Hewei L, Hao B, Xiangwei M, Chao S, Jinhai S, Yulong Z (2012) Fabrication of three-dimensional helical microchannels with arbitrary length and uniform diameter inside fused silica. Opt Lett 37(18):3825

    Article  Google Scholar 

  • Song SH, Lee CK, Kim TJ, Shin IC, Jun SC, Jung HI (2010) A rapid and simple fabrication method for 3-dimensional circular microfluidic channel using metal wire. Microfluid Nanofluid 9(2–3):533

    Article  Google Scholar 

  • Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Mater 2(4):265

    Article  Google Scholar 

  • Tottori S (2015) Formation of liquid rope coils in a coaxial microfluidic device. Rsc Adv 5:33691

    Article  Google Scholar 

  • Yamada A, Niikura F, Ikuta K (2008) A three-dimensional microfabrication system for biodegradable polymers with high resolution and biocompatibility. J Micromech Microeng 18(2):025035

    Article  Google Scholar 

Download references

Acknowledgments

We thank the support from Project (No. 51221004) supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China,Project (No.145) supported by 2015 Visiting Scholars Professional Development Program of Zhejiang Provincial Education Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-min Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Wm., Zhu, Tk., Jin, Ya. et al. Facile fabrication of helical microfluidic channel based on rope coiling effect. Microsyst Technol 23, 2957–2964 (2017). https://doi.org/10.1007/s00542-016-3010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3010-4

Keywords

Navigation