Skip to main content

Advertisement

Log in

A study of kinetic energy harvesting for biomedical application in the head area

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper is focused on determining a suitability of using a kinetic energy harvester placed in the area of the human head for supplying power to a new generation of cochlear implants. Placement-dependant volumetric and mass constraints of the harvester are discussed, and the requirements for its power output are set based on the power demands on the state-of-the-art cochlear implants. Measured acceleration data for different activities are presented together with a statistics of a random user behaviour during the course of 10 months. Nonlinear simulation model based on CAD geometry and FEM analyses is developed and its parameters are optimized using the sensitivity analysis in order to generate the maximum power. Real life acceleration data are then employed to feed the input of the simulation model of energy harvester to predict the obtainable power output. The feasibility of employing the energy harvesting to power the selected biomedical application is discussed based on simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Accoto D, Calvano M, Campolo D et al (2009) Energetic analysis for self-powered cochlear implants. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. Annual Conference 2009. IEEE Engineering in Medicine and Biology Society, pp 4860–4863. doi:10.1109/IEMBS.2009.5332449

  • Aktakka EE, Najafi K (2014) A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE J Solid-State Circuits 49:2017–2029. doi:10.1109/JSSC.2014.2331953

    Article  Google Scholar 

  • Almouahed S, Gouriou M, Hamitouche C et al (2011) The use of piezoceramics as electrical energy harvesters within instrumented knee implant during walking. IEEE/ASME Trans Mechatron 16:799–807. doi:10.1109/TMECH.2011.2159512

    Article  Google Scholar 

  • Beker L, Zorlu O, Goksu N, Kulah H (2013) Stimulating auditory nerve with MEMS harvesters for fully implantable and self-powered cochlear implants. In: 2013 Transducers and eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems (Transducers and eurosensors XXVII). IEEE, pp 1663–1666

  • Benasciutti D, Moro L, Zelenika S, Brusa E (2009) Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst Technol 16:657–668. doi:10.1007/s00542-009-1000-5

    Article  Google Scholar 

  • Cadei A, Dionisi A, Sardini E, Serpelloni M (2014) Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors. Meas Sci Technol 25:012003. doi:10.1088/0957-0233/25/1/012003

    Article  Google Scholar 

  • Chapman P, DiBerardino L, Hsiao-Wecksler E (2008) Design and optimization of a biomechanical energy harvesting device. In: 2008 IEEE power electronics specialists conference. IEEE, pp 4062–4069

  • Chen I-M, Phee SJ, Luo Z, Lim CK (2010) Personalized biomedical devices and systems for healthcare applications. Front Mech Eng China 6:3–12. doi:10.1007/s11465-011-0209-z

    Google Scholar 

  • Dagdeviren C, Yang BD, Su Y et al (2014) Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA 111:1927–1932. doi:10.1073/pnas.1317233111

    Article  Google Scholar 

  • Dai D, Liu J (2012) Human powered wireless charger for low-power mobile electronic devices. IEEE Trans Consum Electron 58:767–774. doi:10.1109/TCE.2012.6311316

    Article  Google Scholar 

  • Delnavaz A, Voix J (2014) Energy harvesting for in-ear devices using ear canal dynamic motion. IEEE Trans Ind Electron 61:583–590. doi:10.1109/TIE.2013.2242656

    Article  Google Scholar 

  • Galchev T, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromechanical Syst 20:852–866. doi:10.1109/JMEMS.2011.2160045

    Google Scholar 

  • Goll E, Zenner H-P, Dalhoff E (2011) Upper bounds for energy harvesting in the region of the human head. IEEE Trans Biomed Eng 58:3097–3103. doi:10.1109/TBME.2011.2163407

    Article  Google Scholar 

  • Granstrom J, Feenstra J, Sodano HA, Farinholt K (2007) Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct 16:1810–1820. doi:10.1088/0964-1726/16/5/036

    Article  Google Scholar 

  • Hadas Z, Kurfurst J, Ondrusek C, Singule V (2012) Artificial intelligence based optimization for vibration energy harvesting applications. Microsyst Technol 18:1003–1014. doi:10.1007/s00542-012-1432-1

    Article  Google Scholar 

  • Hadas Z, Vetiska V, Huzlik R, Singule V (2014) Model-based design and test of vibration energy harvester for aircraft application. Microsyst Technol 20:831–843. doi:10.1007/s00542-013-2062-y

    Article  Google Scholar 

  • Jang S-J, Kim I-H, Jung H-J, Lee Y-P (2011) A tunable rotational energy harvester for low frequency vibration. Appl Phys Lett 99:134102. doi:10.1063/1.3644130

    Article  Google Scholar 

  • Khan F, Stoeber B, Sassani F (2014a) Modeling and simulation of linear and nonlinear MEMS scale electromagnetic energy harvesters for random vibration environments. Sci World J. doi:10.1155/2014/742580

    Google Scholar 

  • Khan F, Stoeber B, Sassani F (2014b) Modeling of linear micro electromagnetic energy harvesters with nonuniform magnetic field for sinusoidal vibrations. Microsyst Technol 21:683–692. doi:10.1007/s00542-014-2359-5

    Article  Google Scholar 

  • Kim M-K, Kim M-S, Lee S et al (2014) Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater Struct 23:105002. doi:10.1088/0964-1726/23/10/105002

    Article  Google Scholar 

  • Lay-Ekuakille A, Vendramin G, Trotta A, Mazzotta G (2009) Thermoelectric generator design based on power from body heat for biomedical autonomous devices. In: 2009 IEEE international workshop on medical measurements and applications. IEEE, pp 1–4

  • Leonov V, Fiorini P, Vullers RJM (2011) Theory and simulation of a thermally matched micromachined thermopile in a wearable energy harvester. Microelectron J 42:579–584. doi:10.1016/j.mejo.2010.08.002

    Article  Google Scholar 

  • Li Q, Naing V, Donelan JM (2009) Development of a biomechanical energy harvester. J Neuroeng Rehabil 6:22. doi:10.1186/1743-0003-6-22

    Article  Google Scholar 

  • Li P, Gao S, Cai H (2013) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21:401–414. doi:10.1007/s00542-013-2030-6

    Article  Google Scholar 

  • Miao P, Mitcheson PD, Holmes AS et al (2006) Mems inertial power generators for biomedical applications. Microsyst Technol 12:1079–1083. doi:10.1007/s00542-006-0152-9

    Article  Google Scholar 

  • Morais R, Silva NM, Santos PM et al (2011) Double permanent magnet vibration power generator for smart hip prosthesis. Sensors Actuators A Phys 172:259–268. doi:10.1016/j.sna.2011.04.001

    Article  Google Scholar 

  • Naruse Y, Matsubara N, Mabuchi K et al (2009) Electrostatic micro power generation from low-frequency vibration such as human motion. J Micromech Microeng 19:094002. doi:10.1088/0960-1317/19/9/094002

    Article  Google Scholar 

  • Olivo J, Carrara S, De Micheli G (2013) A study of multi-layer spiral inductors for remote powering of implantable sensors. IEEE Trans Biomed Circuits Syst 7:536–547. doi:10.1109/TBCAS.2012.2225620

    Article  Google Scholar 

  • Patel P, Khamesee MB (2013) Electromagnetic micro energy harvester for human locomotion. Microsyst Technol 19:1357–1363. doi:10.1007/s00542-013-1820-1

    Article  Google Scholar 

  • Pfenniger A, Wickramarathna LN, Vogel R, Koch VM (2013) Design and realization of an energy harvester using pulsating arterial pressure. Med Eng Phys 35:1256–1265. doi:10.1016/j.medengphy.2013.01.001

    Article  Google Scholar 

  • Pillatsch P, Yeatman EM, Holmes AS (2012) A scalable piezoelectric impulse-excited energy harvester for human body excitation. Smart Mater Struct 21:115018. doi:10.1088/0964-1726/21/11/115018

    Article  Google Scholar 

  • Rasouli M, Phee LSJ (2010) Energy sources and their development for application in medical devices. Expert Rev Med Devices 7:693–709. doi:10.1586/erd.10.20

    Article  Google Scholar 

  • Renaud M, Fiorini P, van Schaijk R, van Hoof C (2009) Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater Struct 18:035001. doi:10.1088/0964-1726/18/3/035001

    Article  Google Scholar 

  • Romero E, Warrington RO, Neuman MR (2010) Powering biomedical devices with body motion. In: Conference proceedings annual international conference on IEEE Engineering in Medicine and Biology Society IEEE Engineering Medicine and Biology Society annual conference 2010:3747–3750. doi:10.1109/IEMBS.2010.5627542

  • Smilek J, Hadas Z (2015) Assessment of MEMS energy harvester for medical applications. In: Proceedings of SPIE 9517:95170 N–95170 N–8

  • Starner T (1996) Human-powered wearable computing. IBM Syst. J. 35:618–629

    Article  Google Scholar 

  • Sudano A, Accoto D, Francomano MT et al (2011) Optimization of kinetic energy harvesters design for fully implantable cochlear implants. In: Conference proceedings of annual international conference IEEE Engineering Medicine and Biology Society IEEE Engineering Medicine and Biology Society annual conference 2011:7678–7681. doi:10.1109/IEMBS.2011.6091892

  • Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–9557. doi:10.1021/nn404614z

    Article  Google Scholar 

  • Wei S, Hu H, He S (2013) Modeling and experimental investigation of an impact-driven piezoelectric energy harvester from human motion. Smart Mater Struct 22:105020. doi:10.1088/0964-1726/22/10/105020

    Article  Google Scholar 

  • Wickenheiser AM (2011) Design optimization of linear and non-linear cantilevered energy harvesters for broadband vibrations. J Intell Mater Syst Struct 22:1213–1225. doi:10.1177/1045389X11418859

    Article  Google Scholar 

  • Yoon Y-J, Park W-T, Li KHH et al (2013) A study of piezoelectric harvesters for low-level vibrations in wireless sensor networks. Int J Precis Eng Manuf 14:1257–1262. doi:10.1007/s12541-013-0171-2

    Article  Google Scholar 

  • Yun J, Patel SN, Reynolds MS, Abowd GD (2011) Design and performance of an optimal inertial power harvester for human-powered devices. IEEE Trans Mob Comput 10:669–683. doi:10.1109/TMC.2010.202

    Article  Google Scholar 

  • Žák J, Hadaš Z, Dušek D et al (2015) Model-based design of artificial zero power cochlear implant. Mechatronics. doi:10.1016/j.mechatronics.2015.04.018

    Google Scholar 

  • Zhu G, Bai P, Chen J, Lin Wang Z (2013) Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2:688–692. doi:10.1016/j.nanoen.2013.08.002

    Article  Google Scholar 

Download references

Acknowledgments

This work is an output of research and scientific activities of NETME Centre, supported through project NETME CENTRE PLUS (LO1202) by financial means from the Ministry of Education, Youth and Sports in Czech Republic under the “National Sustainability Programme I”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Smilek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smilek, J., Hadas, Z. A study of kinetic energy harvesting for biomedical application in the head area. Microsyst Technol 22, 1535–1547 (2016). https://doi.org/10.1007/s00542-015-2766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2766-2

Keywords

Navigation