Skip to main content
Log in

Rate-bias-dependent hysteresis modeling of a magnetostrictive transducer

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We suggest a new hysteresis model that can describe rate and bias effects of the harmonic magnetic fields on hysteresis nonlinearities of a magnetostrictive actuator. The proposed model is constructed using the generalized rate-dependent Prandtl-Ishlinskii model that incorporates a rate-bias-dependent threshold and a memoryless functions. The results show that the proposed model can characterize the asymmetric hysteresis effects under different levels of input magnetic bias which are applied at different excitation frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aljanaideh O, Al Janaideh M, Rakheja S, and Su C (2013) Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse Prandtl–Ishlinskii model. Smart Mater Struct 22(2):1–9

  • Al Janaideh M, Krejci P (2012) PrandtlIshlinskii hysteresis models for complex time dependent hysteresis nonlinearities. Phys B Condens Matter 407(9): 1365–1367

  • Al Janaideh M, Su C, Rakheja S (2009) Inverse generalized asymmetric Prandtl–Ishlinskii model for compensation of hysteresis nonlinearities in smart actuators. Proceedings of the IEEE International Conference on Networking, Sensing and Control, Okayama, pp 834839

  • Adly A, Mayergoyz I, Bergqvist A (1991) Preisach modeling of magnetostrictive hysteresis. J Appl Phys 69(8):5777–5779

    Article  Google Scholar 

  • Al Janaideh M, Krejčí P (2011) An inversion formula for a Prandtl-Ishlinskii operator with time dependent thresholds. Phys B 406(8):1528–1532

  • Al Janaideh M, Krejci P (2013) Inverse rate-dependent Prandtl–Ishlinskii Model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Trans Mechatron 18(5):1498–1507

  • Aljanaideh O, Rakheja S, Su C (2014) Experimental characterization and modeling of rate-dependent asymmetric hysteresis of magnetostrictive actuators. Smart Mater Struct 23(3):1–10

    Article  Google Scholar 

  • Cavallo A, Natale C, Pirozzi S, Visone C, Formisano A (2004) Feedback control systems for micropositioning tasks with hysteresis compensation. IEEE Trans Magnet 40(2):876–879

    Article  Google Scholar 

  • Davino D, Giustiniani A, Visone C (2010) Design and test of a stress-dependent compensator for Magnetostrictive actuators. IEEE Trans Magnet 46(2):646–649

    Article  Google Scholar 

  • Davino D, Giustiniani A, Visone C (2012) The piezo-magnetic parameters of Terfenol-D: an experimental viewpoint. Phys B Conden Matter 407:1427–1432

    Article  Google Scholar 

  • Davino D, Natale C, Pirozzi S, Visone C (2004) A phenomenological dynamic model of a magnetostrictive actuator. Phys B 343(1–4):112–116

    Article  Google Scholar 

  • Davino D, Natale C, Pirozzi S, Visone C (2005) A fast compensation algorithm for real-time control of magnetostrictive actuators. J Magnet Magnet Mater 290–291:1351–1354

    Article  Google Scholar 

  • Drincic B, Tan X, Bernstein D (2011) Why are some hysteresis loops shaped like a butterfly? Automatica 47(12):2658–2664

    Article  MathSciNet  MATH  Google Scholar 

  • Feng Y, Rabbath C, Hong H, Al Janaideh M, Su C (2010) Robust control for shape memory alloy micro-actuators based flap positioning system. Proceedings of the American Control Conference, Baltimore, pp 4181–4186

  • Ge P, Jouaneh M (1996) Tracking control of a piezoceramic actuator. IEEE Trans Control Syst Technol 4(3):209–216

    Article  Google Scholar 

  • Jiles D, Atherton D (1986) Theory of ferromagnetic hysteresis. J Magnet Magnet Mater 61(12):48–60

    Article  Google Scholar 

  • Karunanidhi S, Singaperumal M (2010) Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve. Sens Actuator A Phys 157:185–197

    Article  Google Scholar 

  • Krejci P (1986) Hysteresis and periodic solutions of semilinear and quasilinear wave equations. Math Zeitschrift 193:247–264

    Article  MathSciNet  MATH  Google Scholar 

  • Krejci P, Al Janaideh M, Deasy F (2012) Inversion of hysteresis and creep operators. Phys B 407(8):1354–1356

  • Kuhnen K (2003) Modeling, identification and compensation of complex hysteretic nonlinearities - a modified Prandtl-Ishlinskii approach. Euro J Control 9(1):407–418

    Article  MATH  Google Scholar 

  • Macki J, Nistri P, Zecca P (1993) Mathematical models for hysteresis. SIAM Rev 35(1):94–123

    Article  MathSciNet  MATH  Google Scholar 

  • Meng A, Zhu J, Kong M, He H (2013) Modeling of Terfenol-D biased minor hysteresis loops. IEEE Trans Magnet 49(1):553–557

    Article  Google Scholar 

  • Natale C, Velardi F, Visone C (2001) Identification and compensation of hysteresis models for magnetostrictive actuators. Phys B Condens Matter 306(1–4):161–165

    Article  Google Scholar 

  • Pons J (2005) Emerging Actuator Technologies: a micromechatronic approach. Wiley, New York

    Book  Google Scholar 

  • Rakotondrabe M (2013) Smart materials-based actuators at the micro/nano-scale: characterization, control and applications. Springer - Verlag, New York

    Book  Google Scholar 

  • Sanchez-Duran J, Oballe-Peinado O, Castellanos-Ramos J, Vidal-Verdu F (2012) Hysteresis correction of tactile sensor response with a generalized Prandtl-Ishlinskii model. Microsyst Technol 18(1):1127–1138

    Article  Google Scholar 

  • Sjöström M, Visone C (2006) Moving. Prandtl-Ishlinskii operatoers with compensator in a clasoed form. Phys B 372(12):97–100

    Article  Google Scholar 

  • Smith RC (1998) Hysteresis modeling in magnetostrictive materials via preisach operators. J Math Syst Estim Control 8(2):1–23

    MathSciNet  MATH  Google Scholar 

  • Smith RC (2005) Smart material systems. Springler-Verlag, Philadelphia

    Book  MATH  Google Scholar 

  • Stuebner M, Atulasimha J, Smith R (2009) Quantification of hysteresis and nonlinear effects on the frequency response of ferroelectric and ferromagnetic materials. Smart Mater Struct 18(10):1–16

    Article  Google Scholar 

  • Tan X, Baras J (2004) Modeling and control of hysteresis in magnetostrictive actuators. Automatica 40:1469–1480

    Article  MathSciNet  MATH  Google Scholar 

  • Visone C, Sjöström M (2004) Exact invertible hysteresis models based on play operators. Phys B 343(1–4):148–152

    Article  Google Scholar 

  • Zhang J, Merced E, Sepaulveda N, Tan X (2013) Optimal compression of a generalized Prandtl–shlinskii operator in hysteresis modeling. Proceedings of ASME Dynamic Systems and Control Conference, Palo Alto, pp 1–10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Al Janaideh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljanaideh, O., AL-Tahat, M.D. & Al Janaideh, M. Rate-bias-dependent hysteresis modeling of a magnetostrictive transducer. Microsyst Technol 22, 883–892 (2016). https://doi.org/10.1007/s00542-015-2566-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2566-8

Keywords

Navigation