Skip to main content
Log in

Recent progress in low temperature nanoimprint lithography

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Nanoimprint lithography is a low cost and high throughput technology to fabricate nanostructures with excellent resolution. However, traditional thermal nanoimprint limits its application field because high temperature induces many problems. Low temperature nanoimprint lithography, including ultraviolet nanoimprint lithography and room temperature nanoimprint lithography, can reduce or remove thermal cycle, overcome the sticking problem, alleviate the alignment errors due to different coefficients of thermal expansion and pattern polymer based materials that are intolerant to high temperature. Recent development of these three low temperature NIL techniques was discussed from the aspects of new resist, stamp, process and application. Low temperature nanoimprint has wide application in the fields of optoelectronics, displays and bio-applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkaisi MM, Blaikie RJ, McNab SJ (2001) Low temperature nanoimprint lithography using silicon nitride molds. Microelectron Eng 57–58:367–373

    Article  Google Scholar 

  • Amirsadeghi A, Lee JJ, Park S (2011) Surface adhesion and demolding force dependence on resist composition in ultraviolet nanoimprint lithography. Appl Surf Sci 258:1272–1278

    Article  Google Scholar 

  • Auner C, Palfinger U, Gold H, Kraxner J, Haase A, Haber T, Sezen M, Grogger W, Jakopic G, Krenn JR, Leising G, Stadlober B (2010) High-performing submicron organic thin-film transistors fabricated by residue-free embossing. Org Electron 11:552–557

    Article  Google Scholar 

  • Chen Y, Tao J, Zhao X, Cui Z, Schwanecke AS, Zheludev NI (2005) Nanoimprint lithography for planar chiral photonic meta-materials. Microelectron Eng 78–79:612–617

    Article  Google Scholar 

  • Chen HL, Chuang SY, Cheng HC, Lin CH, Chu TC (2006) Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure. Microelectron Eng 83:893–896

    Article  Google Scholar 

  • Choi WM, Song MY, Park OO (2006) Compressed-carbon dioxide (CO2) assisted nanoimprint lithography using polymeric mold. Microelectron Eng 83:1957–1960

    Article  Google Scholar 

  • Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers Appl Phys Lett 67:3114

    Article  Google Scholar 

  • Greer AIM, Seunarine K, Khokhar AZ, MacLaren I, Brydone AS, Moran DAJ, Gadegaard N (2013) Increased efficiency of direct nanoimprinting on planar and curved bulk titanium through surface modification. Microelectron Eng 112:67–73

    Article  Google Scholar 

  • Harrer S, Yang JKW, Salvatore GA, Berggren KK, Ilievski F, Ross CA (2007) Pattern generation by using multistep room-temperature nanoimprint lithography. IEEE Trans Nanotechnol 6(6):639–644

    Article  Google Scholar 

  • Harrer S, Strobel S, Scarpa G, Abstreiter G, Tornow M, Lugli P (2008) Room temperature nanoimprint lithography using molds fabricated by molecular beam epitaxy. IEEE Trans Nanotechnol 7(3):363–370

    Article  Google Scholar 

  • Hong S-H, Jeong J-H, Kim K-I, Lee H (2011) High density phase change data on flexible substrates by thermal curing type nanoimprint lithography. Microelectron Eng 88:2013–2016

    Article  Google Scholar 

  • Hulme JP, An SSA, Goddard N, Miyahara Y, Oki A (2009) Fabrication of a flexible multi-referenced surface plasmon sensor using room temperature nanoimprint lithography. Curr Appl Phy 9:e185–e188

    Article  Google Scholar 

  • Jiao F, Huang Q, Ren W, Zhou W, Qi F, Zheng Y, Xie J (2013) Enhanced performance for solar cells with moth-eye structure fabricated by UV nanoimprint lithography. Microelectron Eng 103:126–130

    Article  Google Scholar 

  • Kettle J, Whitelegg S, Song AM, Wedge DC, Kotacka L, Kolarik V, Madec MB, Yeates SG, Turner ML (2010) Fabrication of planar organic nanotransistors using low temperature thermal nanoimprint lithography for chemical sensor applications. Nanotechnology 21(7):075301. doi:10.1088/0957-4484/21/7/075301

    Article  Google Scholar 

  • Kettle J, Rees A, Brousseau EB, Horie M (2013) Low-temperature thermal nanoimprint lithography of anti-reflective structures for flexible low band gap organic solar cells. J Phys D Appl Phys 46:105102

    Article  Google Scholar 

  • Kim NW, Kim KW, Sin H-C (2008) Finite element analysis of low temperature thermal nanoimprint lithography using a viscoelastic model. Microelectron Eng 85:1858–1865

    Article  Google Scholar 

  • Lebib A, Chen Y, Cambril E, Youinou P, Studer V, Natali M, Pépin A, Janssen HM, Sijbesma RP (2002) Room-temperature and low-pressure nanoimprint lithography. Microelectron Eng 61–62:371–377

    Article  Google Scholar 

  • Li J-Y, Yu H, Wen J-J, Li Z-D, Xu Z-C, Zhang Y-F, Yu H, Lu B-R, Liu R, Chen Y-F (2012) Fabrication of nano-strctures on PEDOT:pSS film by nanoimprint lithography. Adv Mater Res 465:287–291

    Article  Google Scholar 

  • Lu Y, Hu W, Ma Y, Zhang L, Sun J, Lu N, Shen J (2006) Patterning layered polymeric multilayer films by room—temperature nanoimprint lithography. Macromol Rapid Commun 27(7):505–510

    Article  Google Scholar 

  • Mekaru H, Takahashi M (2008) Ultrasonic nanoimprint on poly(ethylene terephthalate) at room temperature. Jpn J Appl Phys 47:5178–5184

    Article  Google Scholar 

  • Mele E, Camposeo A, Del Carro P, Di Benedetto F, Stabile R, Persano L, Cingolani R, Pisignano D (2007) Imprinting strategies for 100 nm lithography on polyfluorene and poly(phenylenevinylene) derivatives and their blends. Mater Sci Eng C 27:1428–1433

    Article  Google Scholar 

  • Mohamed K, Alkaisi MM, Smaill J (2006) Resist deformation at low temperature in nanoimprint lithography. Curr Appl Phys 6:486–490

    Article  Google Scholar 

  • Muys J, Alkaisi MM, Evans JJ (2006) Bioimprint: Nanoscale analysis by replication of cellular topography using soft lithography. J Biomed Nanotech 2:11–15

    Article  Google Scholar 

  • Okada M, Shibata M, Haruyama Y, Kanda K, Hirai Y, Matsui S (2010) Cross-sectional observation of nanoimprint resins filled in SiO2/Si mold pattern using scanning electron microscopy. Microelectron Eng 87:1159–1163

    Article  Google Scholar 

  • Okada M, Nakano S, Yamashita K, Kawahara S, Matsui S (2011) Direct patterning on side chain crystalline polymer by thermal nanoimprinting using mold without antisticking layer. Microelectron Eng 88:2084–2087

    Article  Google Scholar 

  • Okada M, Miyake H, Iyoshi S, Yukawa T, Katase T, Tone K, Haruyama Y, Matsui S (2013) Double patterning in nanoimprint lithography. Microelectron Eng 112:139–142

    Article  Google Scholar 

  • Pagliara S, Camposeo A, Mele E, Persano L, Cingolani R, Pisignano D (2010) Enhancement of light polarization from electrospun polymer fibers by room temperature nanoimprint lithography. Nanotechnology 21(21):215304

    Article  Google Scholar 

  • Park SY, Choi KB, Lim HJ, Lee JJ (2011) Fabrication of a nano-scale embedded metal electrode in flexible films by UV/thermal nanoimprint lithography tools. Microelectron Eng 88:1606–1609

    Article  Google Scholar 

  • Samsuri F, Alkaisi MM, Mitchell JS, Evans JJ (2010) Replication of cancer cells using soft lithography bioimprint technique. Microelectron Eng 87:699–703

    Article  Google Scholar 

  • Scheer H-C, Bogdanski N, Wissen M, Konishi T, Hirai Y (2005) Polymer time constants during low temperature nanoimprint lithography. J Vac Sci Technol B: Microelectron Nanometer Struct 23(6):2963–2966

    Article  Google Scholar 

  • Schuster C, Reuther F, Kolander A, Gruetzner G (2009) mr-NIL 6000LT—epoxy-based curing resist for combined thermal and UV nanoimprint lithography below 50 °C. Microelectron Eng 86:722–725

    Article  Google Scholar 

  • Song JH, Huh H, Kim SH, Hahn HT (2006) Finite element analysis of room temperature nanoimprint lithography process with rate dependent plasticity. Mater Sci Forum 505–507(1):85–90

    Article  Google Scholar 

  • Sung J-H, Lee M-W, Lee S-G, Park S-G, Lee E-H, Beom-Hoan O (2007) Realization of various sub-micron metal patterns using room temperature nanoimprint lithography. Thin Solid Films 515:5153–5157

    Article  Google Scholar 

  • Takei S, Ogawa T, Deschner R, Willson CG (2014) Reduction of pattern peeling in step-and-flash imprint lithography. Microelectron Eng 116:44–50

    Article  Google Scholar 

  • Wu C-C, Hsu SL-C, Liao W-C (2009) A photo-polymerization resist for UV nanoimprint lithography. Microelectron Eng 86:325–329

    Article  Google Scholar 

  • Yajima K, Adachi K, Tsukahara Y, Taniguchi J (2013) Fabrication of antireflection structure with antifouling-effect surface by ultraviolet nanoimprint lithography. Microelectron Eng 110:188–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H. Recent progress in low temperature nanoimprint lithography. Microsyst Technol 21, 1–7 (2015). https://doi.org/10.1007/s00542-014-2366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2366-6

Keywords

Navigation