Skip to main content
Log in

Patterning of carbon nanotube films on PDMS using SU-8 microstructures

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we propose a simple and low-cost fabrication technique for patterning carbon nanotube (CNT) films on polydimethylsiloxane (PDMS), which can be used in flexible sensors and electronics. We demonstrate CNT patterning on both recessed and flat PDMS surfaces using a standard photolithography method. By this proposed technique, we were able to fabricate a CNT film, having a high flexibility and good conductivity, on a PDMS surface. A CNT pattern with a minimum feature resolution of 150 μm was obtained using the proposed fabrication technique. The sheet resistance of the CNT film on the PDMS surface was determined to be in the 100–280 Ω/sq range. The thickness and resultant resistivity of the CNT film can be easily controlled by controlling just the spray duration. Furthermore, the gauge factor of the proposed device is higher than that of metal and it increases as the thickness of the CNT film increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahir SV, Terentjev EM (2005) Photomechanical actuation in polymer-nanotube composites. Nat Mater 4(6):491–495. doi:10.1038/nmat1391

    Article  Google Scholar 

  • Béfahy S, Yunus S, Burguet V, Heine JS, Dague E, Trooters M, Bertrand P (2007) Metallization process for polydimethylsiloxane (PDMS) rubber, vol 1. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Han KN, Li CA, Ngoc Bui MP, Seong GH (2010) Patterning of single-walled carbon nanotube films on flexible, transparent plastic substrates. Langmuir ACS J Surf Colloids 26(1):598–602

    Article  Google Scholar 

  • Jung YJ, Kar S, Talapatra S, Soldano C, Viswanathan G, Li X, Yao Z, Ou FS, Avadhanula A, Vajtai R (2006) Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications. Nano Lett 6(3):413–418

    Article  Google Scholar 

  • Kaempgen M, Duesberg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surf Sci 252(2):425–429. doi:10.1016/j.apsusc.2005.01.020

    Article  Google Scholar 

  • Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3(2):115–120. doi:10.1038/nmat1059

    Article  Google Scholar 

  • Lacour SP, Jones J, Suo Z, Wagner S (2004) Design and performance of thin metal film interconnects for skin-like electronic circuits. Electron Device Lett IEEE 25(4):179–181

    Article  Google Scholar 

  • Lacour SP, Chan D, Wagner S, Li T, Suo Z (2006a) Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl Phys Lett 88:204103

    Article  Google Scholar 

  • Lacour SP, Wagner S, Narayan RJ, Li T, Suo Z (2006b) Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J Appl Phys 100:014913

    Article  Google Scholar 

  • Lee K, Lee SS, Lee JA, Lee K-C, Ji S (2010) Carbon nanotube film piezoresistors embedded in polymer membranes. Appl Phys Lett 96(1):013511. doi:10.1063/1.3272686

    Article  Google Scholar 

  • Leem DS, Kim S, Kim JW, Sohn JI, Edwards A, Huang J, Wang X, Kim JJ, Bradley DD, Demello JC (2010) Rapid patterning of single-wall carbon nanotubes by interlayer lithography. Small 6(22):2530–2534. doi:10.1002/smll.201000971

    Article  Google Scholar 

  • Liu C-X, Choi J-W (2009) Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing. J Micromech Microeng 19(8):085019. doi:10.1088/0960-1317/19/8/085019

    Article  Google Scholar 

  • Patel JN, Kaminska B, Gray BL, Gates BD (2009) A sacrificial SU-8 mask for direct metallization on PDMS. J Micromech Microeng 19(11):115014. doi:10.1088/0960-1317/19/11/115014

    Article  Google Scholar 

  • Saran N, Parikh K, Suh DS, Munoz E, Kolla H, Manohar SK (2004) Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J Am Chem Soc 126(14):4462–4463

    Article  Google Scholar 

  • Shaikh KA, Ryu KS, Goluch ED, Nam JM, Liu J, Thaxton CS, Chiesl TN, Barron AE, Lu Y, Mirkin CA (2005) A modular microfluidic architecture for integrated biochemical analysis. Proc Nat Acad Sci USA 102(28):9745

    Article  Google Scholar 

  • Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4(2):134–137. doi:10.1038/nmat1293

    Article  Google Scholar 

  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113

    Article  Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Anal chem 76(12):3373–3386

    Article  Google Scholar 

  • Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276. doi:10.1126/science.1101243

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010-0019453) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) [2009-0076641].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Seok Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Yun, KS. Patterning of carbon nanotube films on PDMS using SU-8 microstructures. Microsyst Technol 19, 743–748 (2013). https://doi.org/10.1007/s00542-012-1677-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1677-8

Keywords

Navigation