Skip to main content
Log in

Hot embossing of polymer nanochannels using PMMA moulds

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A novel hot embossing method is developed to fabricate polymer nanochannels. The pattern on the silicon nanomould is transferred to polymethylmethacrylate (PMMA) plates, and then polyethylene terephthalate (PET) nanochannels are embossed by using the PMMA mould. The use of the PMMA intermediate mould can extremely increase the device yield of the expensive silicon nanomould. To avoid the use of nanolithography, a method based on UV-lithography techniques for fabricating silicon nanomoulds with sub-micrometer width was put forward. 1 PMMA mould can be used to repeatedly emboss at least 30 PET substrates without damage and obvious deformation. Good pattern fidelity of PET nanochannels was obtained at the optimized embossing temperature of 90 °C. For an 808 nm-wide and 195 nm-deep nanochannel, the variations in width and depth between PET nanochannels and PMMA moulds were 1.8 and 2.5 %, respectively. The reproducibility was also evaluated, and the relative standard deviations in width and depth of 5 PET nanochannels were 5.1 and 7.3 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abgrall P, Low LN, Nguyen NT (2007) Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab Chip 7:520–522. doi:10.1039/b616134k

    Article  Google Scholar 

  • Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–3778. doi:10.1063/1.1713945

    Article  Google Scholar 

  • Eijkel JCT, Bomer J, Tas NR, van den Berg A (2004) 1-D nanochannels fabricated in polyimide. Lab Chip 4:161–163. doi:10.1039/b315859d

    Article  Google Scholar 

  • Fanzio P, Mussi V, Manneschi C, Angeli E, Firpo G, Repetto L, Valbusa U (2011) DNA detection with a polymeric nanochannel device. Lab Chip 11:2961–2966. doi:10.1039/c1lc20243j

    Article  Google Scholar 

  • Hoang HT, Segers-Nolten IM, Berenschot JW, de Boer MJ, Tas NR, Haneveld J, Elwenspoek MC (2009) Fabrication and interfacing of nanochannel devices for single-molecule studies. J Micromech Microeng 19:065017. doi:10.1088/0960-1317/19/6/065017

    Article  Google Scholar 

  • Liang XG, Morton KJ, Austin RH, Chou SY (2007) Single sub-20 nm wide, centimeter-long nanofluidic channel fabricated by novel nanoimprint mould fabrication and direct imprinting. Nano Lett 7:3774–3780. doi:10.1021/nl072253x

    Article  Google Scholar 

  • Liu JS, Liu C, Guo JH, Wang LD (2006) Electrostatic bonding of a silicon master to a glass wafer for plastic microchannel fabrication. J Mater Process Technol 178:278–282. doi:10.1016/j.jmatprotec.2006.04.009

    Article  Google Scholar 

  • Liu JS, Qiao HC, Xu Z, Liu C, Wang JY, Du LQ, Zhang X, Wang LD (2012) Fabrication of planar nanofluidic channels in thermoplastic polymers by O2 plasma etching. Micro Nano Lett 7:159–162. doi:10.1049/mnl.2011.0651

    Article  Google Scholar 

  • Mokkapati VRSS, Di Virgilio V, Shen C, Mollinger J, Bastemeijer J, Bossche A (2011) DNA tracking within a nanochannel: device fabrication and experiments. Lab Chip 11:2711–2719. doi:10.1039/c1lc20075e

    Article  Google Scholar 

  • Shao PG, van Kan A, Wang LP, Ansari K, Bettiol AA, Watt F (2006) Fabrication of enclosed nanochannels in poly(methylmethacrylate) using proton beam writing and thermal bonding. Appl Phys Lett 88:093515. doi:10.1063/1.2181631

    Article  Google Scholar 

  • Sivanesan P, Okamoto K, English D, Lee CS, DeVoe DL (2005) Polymer nanochannels fabricated by thermomechanical deformation for single-molecule analysis. Anal Chem 77:2252–2258. doi:10.1021/ac048923q

    Article  Google Scholar 

  • Studer V, Pepin A, Chen Y (2002) Nanoembossing of thermoplastic polymers for microfluidic applications. Appl Phys Lett 80:3614–3616. doi:10.1063/1.1479202

    Article  Google Scholar 

  • Utko P, Persson F, Kristensen A, Larsen NB (2011) Injection moulded nanofluidic chips: fabrication method and functional tests using single-molecule DNA experiments. Lab Chip 11:303–308. doi:10.1039/c0lc00260g

    Article  Google Scholar 

  • Wang C, Li SJ, Wu ZQ, Xu JJ, Chen HY, Xia XH (2010) Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device. Lab Chip 10:639–646. doi:10.1039/b915762j

    Article  Google Scholar 

  • Wang JY, Xu Z, Liu C, Liu JS, Liu YL, Wang LD, Yang WD (2012) Effects of electrophoresis and electroosmotic flow on ion enrichment in micro-nanofluidic preconcentrator. Microsyst Technol 18:97–102. doi:10.1007/s00542-011-1386-8

    Article  Google Scholar 

  • Wu JH, Chantiwas R, Amirsadeghi A, Soper SA, Park S (2011) Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps. Lab Chip 11:2984–2989. doi:10.1039/c1lc20294d

    Article  Google Scholar 

  • Xu JD, Locascio L, Gaitan M, Lee CS (2000) Room-temperature imprinting method for plastic microchannel fabrication. Anal Chem 72:1930–1933. doi:10.1021/ac991216q

    Article  Google Scholar 

  • Yoon TH, Hong LY, Lee CS, Kim DP (2008) Fabrication of hybrid-nanofluidic with hydrophilic polymer for DNA separation capillary electrophoresis module. J Phys Chem Solids 69:1325–1329. doi:10.1016/j.jpcs.2007.10.135

    Article  Google Scholar 

  • Yu H, Lu Y, Zhou YG, Wang FB, He FY, Xia XH (2008) A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing. Lab Chip 8:1496–1501. doi:10.1039/b802778a

    Article  Google Scholar 

  • Zhang ZB, Luo Y, Wang XD, He SQ, Meng FT, Wang LD (2010) Bonding of planar poly (methyl methacrylate) (PMMA) nanofluidic channels using thermal assisted ultrasonic bonding method. Microsyst Technol 16:2043–2048. doi:10.1007/s00542-010-1140-7

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51075056), (91023046), the National High-tech R&D Program of China (2012AA040406), and the Program for New Century Excellent Talents in University of China (NCET-10-0284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Jin, X., Sun, T. et al. Hot embossing of polymer nanochannels using PMMA moulds. Microsyst Technol 19, 629–634 (2013). https://doi.org/10.1007/s00542-012-1674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1674-y

Keywords

Navigation