Skip to main content
Log in

A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Fast scanning is highly desired for both ultrasound and photoacoustic microscopic imaging, whereas the liquid environment required for acoustic propagation limits the usage of traditional microelectromechanical systems (MEMS) scanning mirrors. Here, a new water-immersible scanning mirror microsystem has been designed, fabricated and tested. To achieve reliable underwater scanning, flexible polymer torsion hinges fabricated by laser micromachining were used to support the reflective silicon mirror plate. Two efficient electromagnetic microactuators consisting of compact RF choke inductors and high-strength neodymium magnet disc were constructed to drive the silicon mirror plate around a fast axis and a slow axis. The performance of this water-immersible scanning mirror microsystem in both air and water were tested using the laser tracing method. For the fast axis, the resonance frequency reached 224 Hz in air and 164 Hz in water, respectively. The scanning angles in both air and water under ±16 V DC driving were ±12°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±13.6° and ±10°. For the slow axis, the resonance frequency reached 55 Hz in air and 38 Hz in water, respectively. The scanning angles in both air and water under ±10 V DC driving were ±6.5°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±8.5° and ±6°. The feasibility of using such a water-immersible scanning mirror microsystem for scanning ultrasound microscopic imaging has been demonstrated with a 25-MHz ultrasound pulse/echo system and a target consisting of three optical fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chen WH, Gottlieb EJ, Cannata JM, Chen YF, Shung KK (2000) Development of sector scanning ultrasonic backscatter microscope. 2000 IEEE Ultrasonics Symposium

  • Cornelis AVE, John ES (2006) Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J Appl Phys 100:114916

    Article  Google Scholar 

  • Hagelin PM, Krishnamoorthy U, Heritage JP, Solgaard O (2000) Scalable optical cross-connect switch using micromachined mirrors. IEEE Photonics Technol Lett 12:882–884

    Article  Google Scholar 

  • Hyejun R, Piyawattanametha W, Taguchi Y, Daesung L, Mandella MJ, Solgaard O (2007) Two-dimensional MEMS scanner for dual-axes confocal microscopy. J Microelectromech Syst 16:969–976

    Article  Google Scholar 

  • Jung WY, Tang S, McCormic DT, Xie TQ, Ahn YC, Su JP, Tomov IV, Krasieva TB, Tromberg BJ, Chen ZP (2008) Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy. Opt Lett 33:1324–1326

    Article  Google Scholar 

  • Liu C (2006) Foundations of MEMS. Upper Saddle River, NJ

    Google Scholar 

  • Wang LV (2009) Multiscale photoacoustic microscopy and computed tomography. Nat Photonics 3:503–509

    Article  Google Scholar 

  • Wang L, Maslov K, Yao J, Rao B, Wang LV (2011) Fast voice-coil scanning optical-resolution photoacoustic microscopy. Opt Lett 36:139–141

    Article  Google Scholar 

  • Yang VXD, Mao YX, Standish BA, Munce NR, Chiu S, Burnes D, Wilson BC, Vitkin IA, Himmer PA, Dickensheets DL (2006) Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking. Opt Lett 31:1262–1264

    Article  Google Scholar 

  • Yao J, Wang LV (2011) Photoacoustic tomography: fundamentals, advances and prospects. Contrast Media Mol Imaging 6:332–345

    Article  Google Scholar 

  • Yao J, Maslov KI, Zhang Y, Xia Y, Wang LV (2011) Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt 16:076003

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the National Institutes of Health (U54-CA136398) and a grant from the National Science Foundation (CMMI-1131758). Lihong Wang has a financial interest in Microphotoacoustics, Inc. and Endra, Inc., which, however, did not support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hsien Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CH., Yao, J., Wang, L.V. et al. A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications. Microsyst Technol 19, 577–582 (2013). https://doi.org/10.1007/s00542-012-1660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1660-4

Keywords

Navigation