Skip to main content

Advertisement

Log in

Lab-on-a-chip: a component view

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Miniaturization is being increasingly applied to biological and chemical analysis processes. Lab-on-a-chip systems are direct creation of the advancement in the miniaturization of these processes. They offer a host of exciting applications in several areas including clinical diagnostics, food and environmental analysis, and drug discovery and delivery studies. This paper reviews lab-on-a-chip systems from their components perspective. It provides a categorization of the standard functional components found in lab-on-a-chip devices together with an overview of the latest trends and developments related to lab-on-a-chip technologies and their application in nanobiotechnology. The functional components include: injector, transporter, preparator, mixer, reactor, separator, detector, controller, and power supply. The components are represented by appropriate symbols allowing designers to present their lab-on-a-chip products in a standard manner. Definition and role of each functional component are included and complemented with examples of existing work. Through the approach presented in this paper, it is hoped that modularity and technology transfer in lab-on-a-chip systems can be further facilitated and their application in nanobiotechnology be expanded

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahn CH et al (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92(1):154–173

    Article  Google Scholar 

  • Andersson H, van der Wijngaart W, Nilsson P, Enoksson P, Stemme G (2001) A valve-less diffuser micropump for microfluidic analytical systems. Sens Actuators B 72(3):259–265

    Article  Google Scholar 

  • Applegate RW Jr et al (2006) Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6:422–426

    Google Scholar 

  • Auroux PA, Iossifidis D, Reyes D, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74(12):2637–2652

    Google Scholar 

  • Bally M, Halter M, Vörös J, Grandin HM (2006) Optical microarray biosensing techniques. Surf Interface Anal 38(11):1442–1458

    Article  Google Scholar 

  • Banerjee A, Pais A, Papautsky I, Klotzkin D (2008) A polarization isolation method for high-sensitivity, low-cost on-chip fluorescence detection for microfluidic lab-on-a-chip. IEEE Sens J 8(5):621–627

    Article  Google Scholar 

  • Bhattacharyya A, Klapperich CM (2006) Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal Chem 78:788–792

    Article  Google Scholar 

  • Blas M, Delaunay N, Rocca J-L (2008) Electrokinetic-based injection modes for separative microsystems. Electrophoresis 29(1):20–32

    Article  Google Scholar 

  • Bottausci F, Cardonne C, Meinhart C, Mezic I (2007) An ultrashort mixing length micromixer: the shear superposition micromixer. Lab Chip 7(3):396–398

    Article  Google Scholar 

  • Brown RB, Audet J (2008) Current techniques for single-cell lysis. J R Soc Interface 5(Suppl 2):131–138

    Google Scholar 

  • Cady NC, Stelick S, Batt CA (2003) Nucleic acid purification using microfabricated silicon structures. Biosens Bioelectron 19(1):59–66

    Article  Google Scholar 

  • Cady NC, Stelick S, Kunnavakkam MV, Batt CA (2005) Real-time pcr detection of listeria monocytogenes using an integrated microfluidics platform. Sens Actuators B 107(1):332–341

    Article  Google Scholar 

  • Cai Z, Chen H, Chen B, Huang C (2006) A gravity driven micro flow injection wetting film extraction system on a polycarbonate chip. Talanta 68(3):895–901

    Article  Google Scholar 

  • Cao H, Tegenfeldt JO, Austin RH, Chou SY (2002) Gradient nanostructures for interfacing microfluidics and nanofluidics. Appl Phys Lett 81(16):3058

    Article  Google Scholar 

  • Carlen ET, van den Berg A (2007) Nanowire electrochemical sensors: can we live without labels? Lab Chip 7(1):19–23

    Article  Google Scholar 

  • Chandrasekaran A, Packirisamy M (2006) Absorption detection of enzymatic reaction using optical microfluidics based intermittent flow microreactor system. IEE Proc Nanobiotechnol 153(6):137–143

    Article  Google Scholar 

  • Chen H, Meiners J-C (2004) Topologic mixing on a microfluidic chip. Appl Phys Lett 84(12):2193–2195

    Article  Google Scholar 

  • Chen Y-F, Yang JM, Gau J-J, Ho C-M, Tai Y-C (2000) Microfluidic system for biological agent detection. In: The 3rd international conference on the interaction of art and fluid mechanics, Zurich

  • Chen G, Lin Y, Wang J (2006) Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta 68(3):497–503

    Article  MathSciNet  Google Scholar 

  • Chen X, Cui D, Liu C, Li H, Chen J (2007) Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal Chim Acta 584(2):237–243

    Article  Google Scholar 

  • Cho BS et al (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem 75(7):1671–1675

    Article  Google Scholar 

  • Choi S, Park J-K (2005) Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip 5(10):1161–1167

    Article  Google Scholar 

  • Choi S, Song S, Choi C, Park J-K (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7(11):1532–1538

    Article  Google Scholar 

  • Chooi J-W et al (2002) An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2:27–30

    Article  Google Scholar 

  • Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442(7101):387–393

    Article  Google Scholar 

  • Crevillen AG, Pumera M, Gonzalez MC, Escarpa A (2009) Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab Chip 9(2):346–353

    Article  Google Scholar 

  • Crevillén AG, Hervás M, López MA, González MC, Escarpa A (2007) Real sample analysis on microfluidic devices. Talanta 74:342–357

    Article  Google Scholar 

  • Cross JD, Strychalski EA, Craighead HG (2007) Size-dependent DNA mobility in nanochannels. J Appl Phys 102(2):024701

    Article  Google Scholar 

  • Cygan ZT, Cabral JT, Beers KL, Amis EJ (2005) Microfluidic platform for the generation of organic-phase microreactors. Langmuir 21(8):3629–3634

    Article  Google Scholar 

  • Daniel D, Gutz IGR (2006) Electronic micropipettor: a versatile fluid propulsion and injection device for micro-flow analysis. Anal Chim Acta 571(2):218–227

    Article  Google Scholar 

  • De Vos KM, Bartolozzi I, Bienstman P, Baets R, Schacht E (2007) Optical biosensor based on silicon-on-insulator microring cavities for specific protein binding detection. In: Nanoscale imaging, spectroscopy, sensing, and actuation for biomedical applications IV (SPIE), pp 64470K–64478K

  • Doku GN, Verboom W, Reinhoudt DN, van den Berg A (2005) On-microchip multiphase chemistry—a review of microreactor design principles and reagent contacting modes. Tetrahedron 61(11):2733–2742

    Article  Google Scholar 

  • Dong H, Li CM, Zhou Q, Sun JB, Miao JM (2006) Sensitive electrochemical enzyme immunoassay microdevice based on architecture of dual ring electrodes with a sensing cavity chamber. Biosens Bioelectron 22(5):621–626

    Article  Google Scholar 

  • Easley CJ et al (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. PNAS 103(51):19272–19277

    Article  Google Scholar 

  • Eijkel JCT, van den Berg A (2006) Nanotechnology for membranes, filters and sieves: a series of mini-reviews covering new trends in fundamental and applied research, and potential applications of miniaturised technologies. Lab Chip 6(1):19–23

    Article  Google Scholar 

  • Emrich CA, Tian H, Medintz IL, Mathies RA (2002) Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. Anal Chem 74:5076–5083

    Article  Google Scholar 

  • Erickson D, Sinton D, Li D (2004) A miniaturized high-voltage integrated power supply for portable microfluidic applications. Lab Chip 4:87–90

    Article  Google Scholar 

  • Fan X, White IM, Zhu H, Suter JD, Oveys H (2007) Overview of novel integrated optical ring resonator bio/chemical sensors. Proc SPIE 6452M:6420–6451

    Google Scholar 

  • Fissell WH et al (2009) High-performance silicon nanopore hemofiltration membranes. J Memb Sci 326(1):58–63

    Article  Google Scholar 

  • Fletcher PDI, Haswell SJ, Paunov VN (1999) Theoretical considerations of chemical reactions in micro-reactors operating under electroosmotic and electrophoretic control. Analyst 124:1273–1282

    Article  Google Scholar 

  • Foote RS, Khandurina J, Jacobson SC, Ramsey JM (2005) Preconcentration of proteins on microfluidic devices using porous silica membranes. Anal Chem 77(1):57–63

    Article  Google Scholar 

  • Fu AY, Chou HP, Spence C, Arnold FH, Quake SR (2002) An integrated microfabricated cell sorter. Anal Chem 74(11):2451–2457

    Article  Google Scholar 

  • Fu J, Schoch RB, Stevens AL, Tannenbaum SR, Han J (2007) A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat Nano 2(2):121–128

    Article  Google Scholar 

  • Futterer C et al (2004) Injection and flow control system for microchannels. Lab Chip 4(4):351–356

    Article  Google Scholar 

  • Gao J, Xu J, Locascio LE, Lee CS (2001) Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal Chem 73(11):2648–2655

    Article  Google Scholar 

  • Gao J, Yin XF, Fang ZL (2004) Integration of single cell injection, cell lysis, separation and detection of intracelullar constituents on a microfluidic chip. Lab Chip 4:47–52

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Fischbach MA, Sia SK, Whitesides GM (2006) Mixing with bubbles: a practical technology for use with portable microfluidic devices. Lab Chip 6(2):207–212

    Article  Google Scholar 

  • Ghafar-Zadeh E, Sawan M (2007a) A hybrid microfluidic/cmos capacitive sensor dedicated to lab-on-chip applications. IEEE Trans Biomed Circuits Syst 1(4):270–277

    Article  Google Scholar 

  • Ghafar-Zadeh E, Sawan M (2007b) A 0.18 μm cmos capacitive detection lab-on-chip. IEEE Custom Integrated Circuits Conference (CICC), pp 165–172

  • Ghafar-Zadeh E, Sawan M (2008) Charge-based capacitive sensor array for cmos-based laboratory-on-chip applications. IEEE Sens J 8(4):325–332

    Article  Google Scholar 

  • Ghafar-Zadeh E, Sawan M, Therriault D (2007) Novel direct-write cmos-based laboratory-on-chip: design, assembly and experimental results. Sens Actuators A 134(1):27–36

    Article  Google Scholar 

  • Ghosal S (2006) Electrokinetic flow and dispersion in capillary electrophoresis. Annu Rev Fluid Mech 38(1):309–338

    Article  MathSciNet  Google Scholar 

  • Goerke O, Pfeifer P, Schubert K (2004) Water gas shift reaction and selective oxidation of co in microreactors. Appl Catal A Gen 263:11–18

    Article  Google Scholar 

  • Gong M, Wehmeyer KR, Stalcup AM, Limbach PA, Heineman WR (2007) Study of injection bias in a simple hydrodynamic injection in microchip CE. Electrophoresis 28(10):1564–1571

    Article  Google Scholar 

  • Grumann M, Geipel A, Riegger L, Zengerle R, Ducree J (2005) Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip 5(5):560–565

    Article  Google Scholar 

  • Guo WP, Ma XM, Zeng Y (2005) Clinical laboratories on a chip for human immunodeficiency virus assay. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp 1274–1277

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094–1110

    Article  Google Scholar 

  • Hart SJ, Terray AV, Arnold J (2007) Particle separation and collection using an optical chromatographic filter. Appl Phys Lett 91(17):171121–171123

    Article  Google Scholar 

  • Hatch A et al (2001) A rapid diffusion immunoassay in a t-sensor. Nat Biotechnol 19:461–465

    Article  Google Scholar 

  • Herr AE et al (2007) Microfluidic immunoassays as rapid saliva-based clinical diagnostics. PNAS 104(13):5268–5273

    Article  Google Scholar 

  • Hong CC, Choi JW, Ahn CH (2004) A novel in-plane passive microfluidic mixer with modified tesla structures. Lab Chip 4(2):109–113

    Article  Google Scholar 

  • Huang C et al (2009) Localized surface plasmon resonance biosensor integrated with microfluidic chip. Biomed Microdevices 11(4):893–901

    Article  Google Scholar 

  • Hui WC et al (2007) Microfluidic systems for extracting nucleic acids for DNA and RNA analysis. Sens Actuators A 133(2):335–339

    Article  Google Scholar 

  • Ikuta K, Satake N, Ohashi T, Shibata M (2008) Finger-top total protein analysis system based on new biochemical ic chip.In: Micro Electro Mechanical Systems, 2008 MEMS 2008. IEEE 21st International Conference on, pp 236–239

  • Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85(21):5093–5095

    Article  Google Scholar 

  • Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161

    Article  Google Scholar 

  • Jain KK (2005) The role of nanobiotechnology in drug discovery. Drug Discov Today 10(21):1435–1442

    Article  Google Scholar 

  • Jiang Z, Llandro J, Mitrelias T, Bland JAC (2006) An integrated microfluidic cell for detection, manipulation, and sorting of single micron-sized magnetic beads. 50th annual conference on magnetism and magnetic materials, (AIP), pp 08S103–105

  • Jin LJ, Ferrance J, Sanders JC, Landers JP (2003) A microchip-based proteolytic digestion system driven by electroosmotic pumping. Lab Chip 3(1):11–18

    Article  Google Scholar 

  • Jindal R, Cramer SM (2004) On-chip electrochromatography using sol-gel immobilized stationary phase with UV absorbance detection. J Chromatogr A 1044(1–2):277–285

    Article  Google Scholar 

  • Jung B, Fisher K, Ness KD, Rose KA, Raymond P, Mariella J (2008) Acoustic particle filter with adjustable effective pore size for automated sample preparation. Anal Chem 80:8447–8452

    Article  Google Scholar 

  • Kaigala GV et al (2008) An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis. Analyst 133(3):331–338

    Article  Google Scholar 

  • Kataoka S, Endo A, Harada A, Ohmori T (2008) Fabrication of mesoporous silica thin films inside microreactors. Mater Lett 62(4–5):723–726

    Article  Google Scholar 

  • Kikutani Y et al (2002) Pile-up glass microreactor. Lab Chip 2:193–196

    Article  Google Scholar 

  • Klotzkin D, Papautsky I (2007) High-sensitivity integrated fluorescence analysis for microfluidic lab-on-a-chip. SPIE News

  • Kornaros G, Meidanis D, Papaeystathiou Y, Chantzandroulis S, Blionas S (2008) Architecture of a consumer lab-on-chip for pharmacogenomics. Consumer Electronics, 2008 (ICCE 2008). Digest of Technical Papers. International conference on consumer electronics, pp 1–2

  • Kua CH, Lam YC, Yang C, Youcef-Toumi K (2005) Review of bio-particle manipulation using dielectrophoresis. Singapore-MIT, pp 1–7

  • Kuswandi B, Nuriman, Huskens J, Verboom W (2007) Optical sensing systems for microfluidic devices: a review. Anal Chim Acta 601(2):141–155

  • Kutter JP, Jacobson SC, Ramsey JM (2000) Solid phase extraction on microfluidic devices. J Microcolumn Sep 12(2):93–97

    Article  Google Scholar 

  • Lau AY, Lee LP, Chan JW (2008) An integrated optofluidic platform for raman-activated cell sorting. Lab Chip 8(7):1116–1120

    Article  Google Scholar 

  • Lee SJ, Lee SY (2004) Micro total analysis system (μ-tas) in biotechnology. Appl Microbiol Biotechnol 64(3):289–299

    Article  Google Scholar 

  • Lee S-H, Cho SI, Lee C-S, Kim B-G, Kim Y-K (2005) Microfluidic chip for biochemical reaction and electrophoretic separation by quantitative volume control. Sens Actuators B 110(1):164–173

    Article  MathSciNet  Google Scholar 

  • Lee M et al (2009a) Nanowire and nanotube transistors for lab-on-a-chip applications. Lab Chip 9(16):2267–2280

    Article  Google Scholar 

  • Lee Y-F, Lien K-Y, Lei H-Y, Lee G-B (2009b) An integrated microfluidic system for rapid diagnosis of dengue virus infection. Biosens Bioelectron 25(4):745–752

    Article  Google Scholar 

  • Li Y, Dalton C, Crabtree HJ, Nilsson G, Kaler KVIS (2007) Continuous dielectrophoretic cell separation microfluidic device. Lab Chip 7(2):239–248

    Article  Google Scholar 

  • Lien K-Y, Lin J-L, Liu C-Y, Lei H-Y, Lee G-B (2007) Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. Lab Chip 7(7):868–875

    Article  Google Scholar 

  • Lien K-Y et al (2008) Microfluidic systems integrated with a sample pretreatment device for fast nucleic-acid amplification. J Microelectromech Syst 17(2):288–301

    Article  Google Scholar 

  • Lin Y, Timchalk CA, Matson DW, Wu H, Thrall KD (2001) Integrated microfluidics/electrochemical sensor system for monitoring of environmental exposures to lead and chlorophenols. Biomed Microdevices 3(4):331–338

    Article  Google Scholar 

  • Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831

    Article  Google Scholar 

  • Liu RH et al (2006a) Fully integrated miniature device for automated gene expression DNA microarray processing. Anal Chem 78(6):1980–1986

    Google Scholar 

  • Liu B-F, Xu B, Zhang G, Du W, Luo Q (2006b) Micro-separation toward systems biology. J Chromatogr A 1106(1–2):19–28

    Article  Google Scholar 

  • Liu D, Ou Z, Xu M, Wang L (2008) Simplified transient isotachophoresis/capillary gel electrophoresis method for highly sensitive analysis of polymerase chain reaction samples on a microchip with laser-induced fluorescence detection. J Chromatogr A 1214(1–2):165–170

    Article  Google Scholar 

  • Liu C-Y, Rick J, Chou T-C, Lee H-H, Lee G-B (2009) Integrated microfluidic system for electrochemical sensing of urinary proteins. Biomed Microdevices 11(1):201–211

    Article  Google Scholar 

  • Malic L, Kirk AG (2007) Integrated miniaturized optical detection platform for fluorescence and absorption spectroscopy. Sens Actuators A 135(2):515–524

    Article  Google Scholar 

  • Mao P, Han J (2009) Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes. Lab Chip 9(4):586–591

    Article  Google Scholar 

  • Marcus JS, Anderson WF, Quake SR (2006) Microfluidic single-cell mrna isolation and analysis. Anal Chem 78(9):3084–3089

    Article  Google Scholar 

  • Mariella R (2008) Sample preparation: the weak link in microfluidics-based biodetection. Biomed Microdevices 10(6):777–784

    Article  Google Scholar 

  • Matsushita Y et al (2008) Photocatalytic reactions in microreactors. Chem Eng J 135(Suppl 1):S303–S308

    Article  Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499

    Article  Google Scholar 

  • Melin J et al (2004) A liquid-triggered liquid microvalve for on-chip flow control. Sens Actuators B 100(3):463–468

    Article  Google Scholar 

  • Mello AJD, Beard N (2003) Dealing with ‘real’ samples: sample pre-treatment in microfluidic systems. Lab Chip 3(1):11N–20N

    Article  Google Scholar 

  • Minas G, Wolffenbuttel RF, Correia JH (2005) A lab-on-a-chip for spectrophotometric analysis of biological fluids. Lab Chip 5:1303–1309

    Article  Google Scholar 

  • Munce NR, Li J, Herman PR, Lilge L (2004) Microfabricated system for parallel single-cell capillary electrophoresis. Anal Chem 76(17):4983–4989

    Article  Google Scholar 

  • Nguyen N-T, Huang X (2001) Miniature valveless pumps based on printed circuit board technique. Sens Actuators A 88(2):104–111

    Article  Google Scholar 

  • Nilsson A, Petersson F, Jonsson H, Laurell T (2004) Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4(2):131–135

    Article  Google Scholar 

  • Oh KW, Chinsung P, Kak N (2005) A world-to-chip microfluidic interconnection technology with dual functions of sample injection and sealing for a multichamber micro pcr chip. 18th IEEE international conference on micro electro mechanical systems, 2005 (MEMS 2005), pp 714–717

  • Ölvecká E, Masár M, Kaniansky D, Jöhnck M, Stanislawski B (2001) Isotachophoresis separations of enantiomers on a planar chip with coupled separation channels. Electrophoresis 22(15):3347–3353

    Article  Google Scholar 

  • Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980

    Article  Google Scholar 

  • Pattekar AV, Kothare MV (2004) A microreactor for hydrogen production in micro fuel cell applications. J Microelectromech Syst 13(1):7–18

    Article  Google Scholar 

  • Perch-Nielsen IR, Rodrigo PJ, Alonzo CA, Glückstad J (2006) Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment. Opt Express 14(25):12199–12205

    Article  Google Scholar 

  • Petersen NJ, Mogensen KB, Kutter JP (2002) Performance of an in-plane detection cell with integrated waveguides for UV/VIS absorbance measurements on microfluidic separation devices. Electrophoresis 23:3528–3536

    Article  Google Scholar 

  • Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5(1):20–22

    Article  Google Scholar 

  • Piccin E, Laocharoensuk R, Burdick J, Carrilho E, Wang J (2007) Adaptive nanowires for switchable microchip devices. Anal Chem 79(12):4720–4723

    Article  Google Scholar 

  • Pipper J, Zhang Y, Neuzil P, Hsieh T-M (2008) Clockwork pcr including sample preparation. Angew Chem Int Ed 47(21):3900–3904

    Article  Google Scholar 

  • Popovtzer R, Neufeld T, Ron Ez, Rishpon J, Shacham-Diamand Y (2006) Electrochemical detection of biological reactions using a novel nano-bio-chip array. Sens Actuators B 119:664–672

    Article  Google Scholar 

  • Ramadan Q, Samper V, Poenar DP, Yu C (2006) An integrated microfluidic platform for magnetic microbeads separation and confinement. Biosens Bioelectron 21(9):1693–1702

    Article  Google Scholar 

  • Renzi RF et al (2004) Hand-held microanalytical instrument for chip-based electrophoretic separations of proteins. Anal Chem 77(2):435–441

    Article  Google Scholar 

  • Rhee M, Burns MA (2008) Microfluidic assembly blocks. Lab Chip 8:1365–1373

    Article  Google Scholar 

  • Sabounchi P et al (2008) Sample concentration and impedance detection on a microfluidic polymer chip. Biomed Microdevices 10(5):661–670

    Article  Google Scholar 

  • Samel B, Nock V, Russom A, Griss P, Stemme G (2007) A disposable lab-on-a-chip platform with embedded fluid actuators for active nanoliter liquid handling. Biomed Microdevices 9(1):61–67

    Article  Google Scholar 

  • Schulte T, Bardell R, Weigl BH (2000) Sample acquisition and control on-chip microfluidic sample preparation. JALA 5(4):83–86

    Google Scholar 

  • Schuster TG, Cho B, Keller LM, Takayama S, Smith GD (2003) Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed 7(1):75–81 Online

    Article  Google Scholar 

  • Seo S, Su T-W, Erlinger A, Ozcan A (2008) Multi-color lucas: lensfree on-chip cytometry using tunable monochromatic illumination and digital noise reduction. Cel Mol Bioeng 1:146–156

    Article  Google Scholar 

  • Shaikh KA et al (2005) A modular microfluidic architecture for integrated biochemical analysis. PNAS 102(28):9745–9750

    Article  Google Scholar 

  • Shih P-H et al (2008) On chip sorting of bacterial cells using sugar-encapsulated magnetic nanoparticles. J Appl Phys 103(7):07A316–313

    Google Scholar 

  • Stanislas K (2003) Discussion on optical integration in lab-on-a-chip microsystems for medical diagnostics. Physica Status Solidi (C) 0(3):998–1012

    Article  Google Scholar 

  • Steigert J et al (2005) Integrated sample preparation, reaction, and detection on a high-frequency centrifugal microfluidic platform. JALA 10(5):331–341

    Google Scholar 

  • Sudarsan AP, Ugaz VM (2006) Fluid mixing in planar spiral microchannels. Lab Chip 6(1):74–82

    Article  Google Scholar 

  • Suzuki H, Yoneyama R (2003) Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sens Actuators B 96(1–2):38–45

    Article  Google Scholar 

  • Suzuki H, Ho C-M, Kasagi N (2004) A chaotic mixer for magnetic bead-based micro cell sorter. J Microelectromech Syst 13(5):779–790

    Article  Google Scholar 

  • Suzuki Y, Yokoyama K, Namatame I (2006) Rapid and easy protein staining for SDS-page using an intramolecular charge transfer-based fluorescent reagent. Electrophoresis 27(17):3332–3337

    Article  Google Scholar 

  • Szita N et al (2005) Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 5(8):819–826

    Article  Google Scholar 

  • Tai C-H, Hsiung S-K, Chen C-Y, Tsai M-L, Lee G-B (2007) Automatic microfluidic platform for cell separation and nucleus collection. Biomed Microdevices 9(4):533–543

    Article  Google Scholar 

  • Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5(7):778–784

    Article  Google Scholar 

  • Tang X et al (2006) Carbon nanotube DNA sensor and sensing mechanism. Nano Lett 6(8):1632–1636

    Article  Google Scholar 

  • Tsai C-H, Wang Y-N, Lin C-F, Yang R-J, Fu L-M (2006) Experimental and numerical investigation into leakage effect in injectors of microfluidic devices. Electrophoresis 27(24):4991–4998

    Article  Google Scholar 

  • Tseng H-Y, Wang C-H, Lin W-Y, Lee G-B (2007) Membrane-activated microfluidic rotary devices for pumping and mixing. Biomed Microdevices 9(4):545–554

    Article  Google Scholar 

  • Ukita Y et al (2008) Application of vertical microreactor stack with polystylene microbeads to immunoassay. Sens Actuators A 145–146:449–455

    Google Scholar 

  • Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem

  • Vieillard J et al (2007) Application of microfluidic chip with integrated optics for electrophoretic separations of proteins. J Chromatogr B 845(2):218–225

    Article  Google Scholar 

  • Wang C-H, Lee G-B (2005) Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection. Biosens Bioelectron 21(3):419–425

    Article  MATH  MathSciNet  Google Scholar 

  • Wang T-H, Chen Y-F, Masset S, Ho C-M, Tai Y-C (2000) Molecular beacon based micro biological detection system. In: Proceedings of international conference on mathematics and engineering techniques in medicine and biological sciences

  • Wang J, Escarpa A, Pumera M, Feldman J (2002) Capillary electrophoresis-electrochemistry microfluidic system for the determination of organic peroxides. J Chromatogr A 952(1–2):249–254

    Google Scholar 

  • Wang X, Saridara C, Mitra S (2005) Microfluidic supported liquid membrane extraction. Anal Chim Acta 543(1–2):92–98

    Article  Google Scholar 

  • Wang A-J, Xu J-J, Chen H-Y (2006) Proteins modification of poly(dimethylsiloxane) microfluidic channels for the enhanced microchip electrophoresis. J Chromatogr A 1107(1–2):257–264

    Article  MathSciNet  Google Scholar 

  • Wang Y, Zhe J, Chung B, Dutta P (2008) A rapid magnetic particle driven micromixer. Microfluid Nanofluid 4(5):375–389

    Article  Google Scholar 

  • Waterval JCM, Lingeman H, Bult A, Underberg WJM (2000) Derivatization trends in capillary electrophoresis. Electrophoresis 21(18):4029–4045

    Article  Google Scholar 

  • Wei F et al (2008) Electrochemical detection of low-copy number salivary RNA based on specific signal amplification with a hairpin probe. Nucl Acids Res 36(11):e65

    Google Scholar 

  • Weigl B, Bardell R, Kesler N, Morris C (2001) Lab-on-a-chip sample preparation using laminar fluid diffusion interfaces—computational fluid dynamics model results and fluidic verification experiments. Fresenius’ J Anal Chem 371(2):97–105

    Article  Google Scholar 

  • Wiles C, Watts P (2007) Parallel synthesis in an EOF-based micro reactor. Chem Commun 46:4928–4930

    Article  Google Scholar 

  • Wong SH, Ward MCL, Wharton CW (2004) Micro t-mixer as a rapid mixing micromixer. Sens Actuators B 100(3):359–379

    Article  Google Scholar 

  • Wu A, Wang L, Jensen E, Mathies R, Boser B (2010a) Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip 10(4):519–521

    Article  Google Scholar 

  • Wu H-W, Hsu R-C, Lin C-C, Hwang S-M, Lee G-B (2010b) An integrated microfluidic system for isolation, counting, and sorting of hematopoietic stem cells. Biomicrofluidics 4(2):024112

    Article  Google Scholar 

  • Xia HM, Wan SYM, Shu C, Chew YT (2005) Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low reynolds numbers. Lab Chip 5(7):748–755

    Article  Google Scholar 

  • Yang Z, Goto H, Matsumoto M, Maeda R (2000) Active micromixer for microfluidic systems using lead-zirconate-titanate(pzt)-generated ultrasonic vibration. Electrophoresis 21(1):116–119

    Article  Google Scholar 

  • Yang Z, Matsumoto S, Goto H, Matsumoto M, Maeda R (2001) Ultrasonic micromixer for microfluidic systems. Sens Actuators A 93(3):266–272

    Article  Google Scholar 

  • Yang Y, Li C, Kameoka J, Lee KH, Craighead HG (2005) A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry. Lab Chip 5(8):869–876

    Article  Google Scholar 

  • Yin D et al (2007) Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip 7(9):1171–1175

    Article  Google Scholar 

  • Yoo J-C, Moon M-C, Choi YJ, Kang CJ, Kim Y-S (2006) A high performance microfluidic system integrated with the micropump and microvalve on the same substrate. Microelectron Eng 83(4–9):1684–1687

    Article  Google Scholar 

  • Yu H, Kwon JW, Kim ES (2005) Chembio extraction on a chip by nanoliter droplet ejection. Lab Chip 5(3):344–349

    Article  Google Scholar 

  • Zhu L, Lee CS, De Voe DL (2006) Integrated microfluidic UV absorbance detector with attomol-level sensitivity for BSA. Lab Chip 6(1):115–120

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. Kouzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, Y.C., Kouzani, A.Z. & Duan, W. Lab-on-a-chip: a component view. Microsyst Technol 16, 1995–2015 (2010). https://doi.org/10.1007/s00542-010-1141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-010-1141-6

Keywords

Navigation