Skip to main content
Log in

Effects of sevoflurane increments on left ventricular systolic long-axis performance during sevoflurane–remifentanil anesthesia for cardiovascular surgery

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Background

The direct impact of sevoflurane on intraoperative left ventricular (LV) systolic performance during cardiac surgery has not been fully elucidated. Peak systolic tissue Doppler velocities of the lateral mitral annulus (S′) have been used to evaluate LV systolic long-axis performance. We hypothesized that incremental sevoflurane concentration (1.0–3.0 inspired-vol%) would dose-dependently reduce S′ in patients undergoing cardiac surgery due to mitral or aortic insufficiency.

Methods

In 20 patients undergoing cardiac surgery in sevoflurane–remifentanil anesthesia, we analyzed intraoperative S′ values which were determined after 10 min exposure to sevoflurane at 1.0, 2.0, and 3.0 inspired-vol% (T1, T2, and T3, respectively) with a fixed remifentanil dose (1.0 μg/kg/min) using transesophageal echocardiography.

Results

Linear mixed-effect modeling demonstrated dose-dependent declines in S′ according to the end-tidal sevoflurane concentration increments (CET-sevoflurane, p < 0.001): the mean value of S′ reduction for each 1.0 vol%-increment of CET-sevoflurane was 1.7 cm/s (95 % confidence interval 1.4–2.1 cm/s). Medians of S′ at T1, T2, and T3 (9.6, 8.9, and 7.5 cm/s, respectively) also exhibited significant declines (by 6.6, 15.6, and 21.2 % for T1 vs. T2, T2 vs. T3, and T1 vs. T3, p < 0.001, =0.002, and <0.001 in Friedman pairwise comparisons, respectively).

Conclusions

Administering sevoflurane as a part of a sevoflurane–remifentanil anesthesia regimen appears to dose-dependently reduce S′, indicating LV systolic performance, in patients undergoing cardiac surgery. Further studies may be required to evaluate the clinical implications of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davies LA, Gibson CN, Boyett MR, Hopkins PM, Harrison SM. Effects of isoflurane, sevoflurane, and halothane on myofilament Ca2+ sensitivity and sarcoplasmic reticulum Ca2+ release in rat ventricular myocytes. Anesthesiology. 2000;93:1034–44.

    Article  CAS  PubMed  Google Scholar 

  2. Bartunek AE, Housmans PR. Effect of sevoflurane on the intracellular Ca2+ transient in ferret cardiac muscle. Anesthesiology. 2000;93:1500–8.

    Article  CAS  PubMed  Google Scholar 

  3. Freiermuth D, Skarvan K, Filipovic M, Seeberger MD, Bolliger D. Volatile anaesthetics and positive pressure ventilation reduce left atrial performance: a transthoracic echocardiographic study in young healthy adults. Br J Anaesth. 2014;112:1032–41.

    Article  CAS  PubMed  Google Scholar 

  4. Bolliger D, Seeberger MD, Kasper J, Bernheim A, Schumann RM, Skarvan K, Buser P, Filipovic M. Different effects of sevoflurane, desflurane, and isoflurane on early and late left ventricular diastolic function in young healthy adults. Br J Anaesth. 2010;104:547–54.

    Article  CAS  PubMed  Google Scholar 

  5. Tabata T, Cardon LA, Armstrong GP, Fukamach K, Takagaki M, Ochiai Y, McCarthy PM, Thomas JD. An evaluation of the use of new Doppler methods for detecting longitudinal function abnormalities in a pacing-induced heart failure model. J Am Soc Echocardiogr. 2003;16:424–31.

    Article  PubMed  Google Scholar 

  6. Yamada H, Oki T, Tabata T, Iuchi A, Ito S. Assessment of left ventricular systolic wall motion velocity with pulsed tissue Doppler imaging: comparison with peak dP/dt of the left ventricular pressure curve. J Am Soc Echocardiogr. 1998;11:442–9.

    Article  CAS  PubMed  Google Scholar 

  7. Sohn DW, Chai IH, Lee DJ, Kim HC, Kim HS, Oh BH, Lee MM, Park YB, Choi YS, Seo JD, Lee YW. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol. 1997;30:474–80.

    Article  CAS  PubMed  Google Scholar 

  8. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.

    Article  CAS  PubMed  Google Scholar 

  9. Yu CM, Sanderson JE, Marwick TH, Oh JK. Tissue Doppler imaging: a new prognosticator for cardiovascular disease. J Am Coll Cardiol. 2007;49:1903–14.

    Article  PubMed  Google Scholar 

  10. Kim DH, Kim YJ, Kim HK, Chang SA, Kim MS, Sohn DW, Oh BH, Park YB. Usefulness of mitral annulus velocity for the early detection of left ventricular dysfunction in a rat model of diabetic cardiomyopathy. J Cardiovasc Ultrasound. 2010;18:6–11.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang HS, Song BG, Kim JY, Kim SN, Kim TY. Impact of propofol anesthesia induction on cardiac function in low-risk patients as measured by intraoperative Doppler tissue imaging. J Am Soc Echocardiogr. 2013;26:727–35.

    Article  PubMed  Google Scholar 

  12. Yang HS, Kim TY, Bang S, Yu GY, Oh C, Kim SN, Yang JH. Comparison of the impact of the anesthesia induction using thiopental and propofol on cardiac function for non-cardiac surgery. J Cardiovasc Ultrasound. 2014;22:58–64.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stefadouras MA, Dougherty MJ, Grossman W, Craige E. Determination of systemic vascular resistance by a noninvasive technique. Circulation. 1973;47:101–7.

    Article  Google Scholar 

  14. Nickalls RW, Mapleson WW. Age-related iso-MAC charts for isoflurane, sevoflurane and desflurane in man. Br J Anaesth. 2003;91:170–4.

    Article  CAS  PubMed  Google Scholar 

  15. Swaminathan M, Nicoara A, Phillips-Bute BG, et al. Utility of a simple algorithm to grade diastolic dysfunction and predict outcome after coronary artery bypass graft surgery. Ann Thorac Surg. 2011;91:1844–50.

    Article  PubMed  Google Scholar 

  16. Alam M, Wardell J, Andersson E, Samad BA, Nordlander R. Effects of first myocardial infarction on left ventricular systolic and diastolic function with the use of mitral annular velocity determined by pulsed wave Doppler tissue imaging. J Am Soc Echocardiogr. 2000;13:343–52.

    Article  CAS  PubMed  Google Scholar 

  17. Katz WE, Gulati VK, Mahler CM, Gorcsan J 3rd. Quantitative evaluation of the segmental left ventricular response to dobutamine stress by tissue Doppler echocardiography. Am J Cardiol. 1997;79:1036–42.

    Article  CAS  PubMed  Google Scholar 

  18. Yamada E, Garcia M, Thomas JD, Marwick TH. Myocardial Doppler velocity imaging: a quantitative technique for interpretation of dobutamine echocardiography. Am J Cardiol. 1998;82:806–9.

    Article  CAS  PubMed  Google Scholar 

  19. Nitzschke R, Wilgusch J, Kersten JF, Trepte CJ, Haas SA, Reuter DA, Goepfert MS. Bispectral index guided titration of sevoflurane in on-pump cardiac surgery reduces plasma sevoflurane concentration and vasopressor requirements. Eur J Anaesthesiol. 2014;31:482–90.

    Article  CAS  PubMed  Google Scholar 

  20. Manyam SC, Gupta DK, Johnson KB, White JL, Pace NL, Westenskow DR, Egan TD. Opioid-volatile anesthetic synergy: a response surface model with remifentanil and sevoflurane as prototypes. Anesthesiology. 2006;105:267–78.

    Article  CAS  PubMed  Google Scholar 

  21. Amà R, Segers P, Roosens C, Claessens T, Verdonck P, Poelaert J. The effects of load on systolic mitral annular velocity by tissue Doppler imaging. Anesth Analg. 2004;99:332–8.

    PubMed  Google Scholar 

  22. Drighil A, Madias JE, Mathewson JW, El Mosalami H, El Badaoui N, Ramdani B, Bennis A. Hemodialysis: effects of acute decrease in preload on tissue Doppler imaging indices of systolic and diastolic function of the left and right ventricles. Eur J Echocardiogr. 2008;9:530–5.

    Article  PubMed  Google Scholar 

  23. Chahal NS, Lim TK, Jain P, Chambers JC, Kooner JS, Senior R. Normative reference values for the tissue Doppler imaging parameters of left ventricular function: a population-based study. Eur J Echocardiogr. 2010;11:51–6.

    Article  PubMed  Google Scholar 

  24. Nikitin NP, Witte KK, Thackray SD, de Silva R, Clark AL, Cleland JG. Longitudinal ventricular function: normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color Doppler tissue imaging. J Am Soc Echocardiogr. 2003;16:906–21.

    Article  PubMed  Google Scholar 

  25. Vinereanu D, Khokhar A, Tweddel AC, Cinteza M, Fraser AG. Estimation of global left ventricular function from the velocity of longitudinal shortening. Echocardiography. 2002;19:177–85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Konkuk University Medical Center, Konkuk University School of Medicine supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Yop Kim.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, WK., Sung, TY., Yu, GY. et al. Effects of sevoflurane increments on left ventricular systolic long-axis performance during sevoflurane–remifentanil anesthesia for cardiovascular surgery. J Anesth 30, 223–231 (2016). https://doi.org/10.1007/s00540-015-2094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-015-2094-9

Keywords

Navigation