Skip to main content

Advertisement

Log in

The mu opioid receptor activation does not affect ischemia-induced agonal currents in rat spinal ventral horn

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Opioid-induced spastic paraplegia after transient spinal cord ischemia during aortic surgery has been reported. Opioids modulate neurotransmission through mu (μ) opioid receptors (MORs) in the spinal ventral horn. However, their effects during ischemic insult are not understood.

Methods

The effects of the selective μ agonist [d-Ala2,-N-Me-Phe4, Gly5-ol]enkephalin (DAMGO) on ischemia-induced agonal currents were examined in the spinal lamina IX neurons of neonatal rats by using the whole-cell patch-clamp technique. Ischemia was simulated in vitro by oxygen/glucose deprivation.

Results

DAMGO (1 μM) produced outward currents in ~60 % of spinal lamina IX neurons at a holding potential of −70 mV. Superfusion with ischemia-simulating medium elicited an agonal current. The latency was 457 ± 18 s. Despite its neuromodulatory effects, DAMGO did not significantly change the latencies of the agonal currents with (440 ± 23 s) or without (454 ± 33 s) DAMGO-induced currents.

Conclusion

Activation of MORs does not influence ongoing ischemia-induced neuronal death. Our findings indicate that MOR agonist administration should be suitable as an anesthetic during aortic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Svensson LG, Patel V, Robinson MF, Ueda T, Roehm JO Jr, Crawford ES. Influence of preservation or perfusion of intraoperatively identified spinal cord blood supply on spinal motor evoked potentials and paraplegia after aortic surgery. J Vasc Surg. 1991;13:355–65.

    Article  CAS  PubMed  Google Scholar 

  2. Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg. 1993;17:357–70.

    Article  CAS  PubMed  Google Scholar 

  3. Rothman SM. Synaptic activity mediates death of hypoxic neurons. Science. 1983;220:536–7.

    Article  CAS  PubMed  Google Scholar 

  4. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330:613–22.

    Article  CAS  PubMed  Google Scholar 

  5. Hara MR, Snyder SH. Cell signaling and neuronal death. Annu Rev Pharmacol Toxicol. 2007;47:117–41.

    Article  CAS  PubMed  Google Scholar 

  6. de Haan P, Kalkman CJ, Jacobs MJ. Pharmacologic neuroprotection in experimental spinal cord ischemia: a systematic review. J Neurosurg Anesthesiol. 2001;13:3–12.

    Article  PubMed  Google Scholar 

  7. North RA. Cellular actions of opiates and cocaine. Ann N Y Acad Sci. 1992;28(654):1–6.

    Article  Google Scholar 

  8. Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev. 2001;81:299–343.

    CAS  PubMed  Google Scholar 

  9. Ikoma M, Kohno T, Baba H. Differential presynaptic effects of opioid agonists on A-delta- and C-afferent glutamatergic transmission to the spinal dorsal horn. Anesthesiology. 2007;107:807–12.

    Article  CAS  PubMed  Google Scholar 

  10. Kohno T, Kumamoto E, Higashi H, Shimoji K, Yoshimura M. Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol. 1999;518:803–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yoshimura M, North RA. Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin. Nature (Lond). 1983;305:529–30.

    Article  CAS  Google Scholar 

  12. Mansour A, Fox CA, Akil H, Watson SJ. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995;18:22–9.

    Article  CAS  PubMed  Google Scholar 

  13. Gouarderes C, Beaudet A, Zajac JM, Cros J, Quirion R. High resolution radioautographic localization of [125I]FK-33-824-labelled mu opioid receptors in the spinal cord of normal and deafferented rats. Neuroscience. 1991;43:197–209.

    Article  CAS  PubMed  Google Scholar 

  14. Kar S, Quirion R. Neuropeptide receptors in developing and adult rat spinal cord: an in vitro quantitative autoradiography study of calcitonin gene-related peptide, neurokinins, mu-opioid, galanin, somatostatin, neurotensin and vasoactive intestinal polypeptide receptors. J Comp Neurol. 1995;354:253–81.

    Article  CAS  PubMed  Google Scholar 

  15. Honda H, Kawasaki Y, Baba H, Kohno T. The mu opioid receptor modulates neurotransmission in the rat spinal ventral horn. Anesth Analg. 2012;115:703–12.

    CAS  PubMed  Google Scholar 

  16. Kakinohana M, Marsala M, Carter C, Davison JK, Yaksh TL. Neuraxial morphine may trigger transient motor dysfunction after a noninjurious interval of spinal cord ischemia: a clinical and experimental study. Anesthesiology. 2003;98:862–70.

    Article  CAS  PubMed  Google Scholar 

  17. Kakinohana M, Nakamura S, Fuchigami T, Davison KJ, Marsala M, Sugahara K. Mu and delta, but not kappa, opioid agonists induce spastic paraparesis after a short period of spinal cord ischaemia in rats. Br J Anaesth. 2006;96:88–94.

    Article  CAS  PubMed  Google Scholar 

  18. Faden AI, Jacobs TP, Smith MT, Zivin JA. Naloxone in experimental spinal cord ischemia: dose-response studies. Eur J Pharmacol. 1984;103:115–20.

    Article  CAS  PubMed  Google Scholar 

  19. Shirasawa Y, Matsumoto M, Yoshimura M, Yamashita A, Fukuda S, Ishida K, et al. Does high-dose opioid anesthesia exacerbate ischemic spinal cord injury in rabbits? J Anesth. 2009;23:242–8.

    Article  PubMed  Google Scholar 

  20. Miyazaki N, Nakatsuka T, Takeda D, Nohda K, Inoue K, Yoshida M. Adenosine modulates excitatory synaptic transmission and suppresses neuronal death induced by ischaemia in rat spinal motoneurones. Pflugers Arch. 2008;457:441–51.

    Article  CAS  PubMed  Google Scholar 

  21. Nishi H, Nakatsuka T, Takeda D, Miyazaki N, Sakanaka J, Yamada H, et al. Hypothermia suppresses excitatory synaptic transmission and neuronal death induced by experimental ischemia in spinal ventral horn neurons. Spine. 2007;32:E741–7.

    Article  PubMed  Google Scholar 

  22. Nohda K, Nakatsuka T, Takeda D, Miyazaki N, Nishi H, Sonobe H, et al. Selective vulnerability to ischemia in the rat spinal cord: a comparison between ventral and dorsal horn neurons. Spine. 2007;32:1060–6.

    Article  PubMed  Google Scholar 

  23. Wang MY, Kendig JJ. Patch clamp studies of motor neurons in spinal cord slices: a tool for high-resolution analysis of drug actions. Acta Pharmacol Sin. 2000;21:507–15.

    CAS  PubMed  Google Scholar 

  24. Cheng G, Kendig JJ. Enflurane decreases glutamate neurotransmission to spinal cord motor neurons by both pre- and postsynaptic actions. Anesth Analg. 2003;96:1354–9.

    Article  CAS  PubMed  Google Scholar 

  25. Honda H, Baba H, Kohno T. Electrophysiological analysis of vulnerability to experimental ischemia in neonatal rat spinal ventral horn neurons. Neurosci Lett. 2011;494:161–4.

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka E, Yamamoto S, Kudo Y, Mihara S, Higashi H. Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. J Neurophysiol. 1997;78:891–902.

    CAS  PubMed  Google Scholar 

  27. Thompson RJ, Zhou N, MacVicar BA. Ischemia opens neuronal gap junction hemichannels. Science. 2006;312:924–7.

    Article  CAS  PubMed  Google Scholar 

  28. Ouanonou A, Zhang Y, Zhang L. Changes in the calcium dependence of glutamate transmission in the hippocampal CA1 region after brief hypoxia-hypoglycemia. J Neurophysiol. 1999;82:1147–55.

    CAS  PubMed  Google Scholar 

  29. Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988;11:465–9.

    Article  CAS  PubMed  Google Scholar 

  30. Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol. 2010;90:439–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rothman S. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci. 1984;4:1884–91.

    CAS  PubMed  Google Scholar 

  32. Cervetto C, Taccola G. GABAA and strychnine-sensitive glycine receptors modulate N-methyl-d-aspartate-evoked acetylcholine release from rat spinal motoneurons: a possible role in neuroprotection. Neuroscience. 2008;154:1517–24.

    Article  CAS  PubMed  Google Scholar 

  33. Lapchak PA, Chapman DF, Nunez SY, Zivin JA. Dehydroepiandrosterone sulfate is neuroprotective in a reversible spinal cord ischemia model: possible involvement of GABA (A) receptors. Stroke. 2000;31:1953–6.

    Article  CAS  PubMed  Google Scholar 

  34. Madden KP. Effect of gamma-aminobutyric acid modulation on neuronal ischemia in rabbits. Stroke. 1994;25:2271–4.

    Article  CAS  PubMed  Google Scholar 

  35. Chen M, Tao YX, Gu JG. Inward currents induced by ischemia in rat spinal cord dorsal horn neurons. Mol Pain. 2007;3:10.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kiedrowski L. N-Methyl-d-aspartate excitotoxicity: relationships among plasma membrane potential, Na(+)/Ca(2+) exchange, mitochondrial Ca(2+) overload, and cytoplasmic concentrations of Ca(2+), H(+), and K(+). Mol Pharmacol. 1999;56:619–32.

    CAS  PubMed  Google Scholar 

  37. Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev. 2005;85:201–79.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Lipton P. Cytosolic Ca2+ changes during in vitro ischemia in rat hippocampal slices: major roles for glutamate and Na+-dependent Ca2+ release from mitochondria. J Neurosci. 1999;19:3307–15.

    CAS  PubMed  Google Scholar 

  39. Formisano L, Noh KM, Miyawaki T, Mashiko T, Bennett MV, Zukin RS. Ischemic insults promote epigenetic reprogramming of mu opioid receptor expression in hippocampal neurons. Proc Natl Acad Sci USA. 2007;104:4170–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Oda Y, Muroishi Y, Misawa H, Suzuki S. Comparative study of gene expression of cholinergic system-related molecules in the human spinal cord and term placenta. Neuroscience. 2004;128:39–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research (Grant number 21791438, 24791582) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Tokyo, Japan.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuro Kohno.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honda, H., Baba, H. & Kohno, T. The mu opioid receptor activation does not affect ischemia-induced agonal currents in rat spinal ventral horn. J Anesth 28, 839–845 (2014). https://doi.org/10.1007/s00540-014-1829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-014-1829-3

Keywords

Navigation