Skip to main content

Advertisement

Log in

Effects of estrogen on esophageal function through regulation of Ca2+-related proteins

  • Original Article-Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The calcium ion is important for physiological functions in all tissues and organs and essential to many vital functions, including hormone secretion and muscle contraction. The intracellular concentration of calcium is regulated by calcium related proteins such as CaBP-9k, PMCA1, and NCX1. In this study, we investigated the relationship between calcium regulation and esophageal functions such as mucin secretion and smooth muscle contraction.

Methods

To evaluate the influence of sex steroid hormones, immature rats were treated for 3 days with estradiol (E2), progesterone (P4), and their antagonists (ICI 182,780, and RU486). Esophageal function, transcription level, and localization of CaBP-9k, PMCA1, NCX1, ERα, and MUC2 were examined in the esophagus.

Results

Transcriptional level of Cabp-9k and Muc2 was increased by E2, but not by P4. CaBP-9k, PMCA1, and MUC2 were mainly localized in the mucosal layer. Acidic mucosubstances in the esophagus were increased by E2 and recovered by ICI treatment. Unlike the expression of Cabp-9k, mRNA levels of Pmca1, Ncx1, and Erα were only decreased in response to E2, and recovered by ICI co-treatment group. The contraction of the esophagus and mRNA level of Mylk were reduced by E2. Overall, E2 upregulated mucus secretion, but downregulated muscle contraction in the esophagus through regulation of the expression of calcium related genes and the resultant intracellular calcium level.

Conclusions

The regulation of E2 in the function of esophagus may be applied to treat esophageal diseases such as reflux esophagitis, achalasia, and esophageal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaBP-9k:

S100 calcium binding protein G, Calbindin-D9k

PMCA1:

Plasma membrane Ca2+ ATPase

NCX1:

Sodium-calcium exchanger 1

E2:

17β –estradiol

P4:

Progesterone

ICI:

ICI 182,780

RU:

Mifepristone, RU486

ERα:

Estrogen receptor-alpha

MUC2:

Mucin 2

MYLK:

Myosin light chain kinase

BW:

Body wegiht

PND:

Postnatal day

DAPI:

4′,6-diamidino-2-phenylindole

AB-PAS:

Alcian blue-periodic acid-Schiff

References

  1. Kim KM, Cho YK, Bae SJ, et al. Prevalence of gastroesophageal reflux disease in Korea and associated health-care utilization: a national population-based study. J Gastroenterol Hepatol. 2012;27(4):741–5.

    Article  PubMed  Google Scholar 

  2. Masaka T, Iijima K, Endo H, et al. Gender differences in oesophageal mucosal injury in a reflux oesophagitis model of rats. Gut. 2013;62(1):6–14.

    Article  CAS  PubMed  Google Scholar 

  3. Traube M, Dubovik S, Lange RC, et al. The role of nifedipine therapy in achalasia: results of a randomized, double-blind, placebo-controlled study. Am J Gastroenterol. 1989;84(10):1259–62.

    CAS  PubMed  Google Scholar 

  4. Bianco SD, Peng JB, Takanaga H, et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res. 2007;22(2):274–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frick KK, Bushinsky DA. Molecular mechanisms of primary hypercalciuria. J Am Soc Nephrol. 2003;14(4):1082–95.

    Article  PubMed  Google Scholar 

  6. Poburko D, Potter K, van Breemen E, et al. Mitochondria buffer NCX-mediated Ca2+ -entry and limit its diffusion into vascular smooth muscle cells. Cell Calcium. 2006;40(4):359–71.

    Article  CAS  PubMed  Google Scholar 

  7. Maiti A, Beckman MJ. Extracellular calcium is a direct effecter of VDR levels in proximal tubule epithelial cells that counter-balances effects of PTH on renal Vitamin D metabolism. J Steroid Biochem Mol Biol. 2007;103(3–5):504–8.

    Article  CAS  PubMed  Google Scholar 

  8. Yang H, Choi KC, Hyun SH, et al. Coexpression and estrogen-mediated regulation of TRPV6 and PMCA1 in the human endometrium during the menstrual cycle. Mol Reprod Dev. 2011;78(4):274–82.

    Article  CAS  PubMed  Google Scholar 

  9. Ahn C, An BS, Jeung EB. Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas. Mol Cell Endocrinol. 2015;412:302–8.

    Article  CAS  PubMed  Google Scholar 

  10. Winslow RL, Walker MA, Greenstein JL. Modeling calcium regulation of contraction, energetics, signaling, and transcription in the cardiac myocyte. Wiley Interdiscip Rev Syst Biol Med. 2016;8(1):37–67.

    Article  CAS  PubMed  Google Scholar 

  11. Yang H, Kuang SJ, Rao F, et al. Species-specific differences in the role of L-type Ca(2)(+) channels in the regulation of coronary arterial smooth muscle contraction. Naunyn-Schmiedeberg’s Arch Pharmacol. 2016;389(2):151–7.

    Article  CAS  Google Scholar 

  12. Jeung EB, Krisinger J, Dann JL, et al. Molecular cloning of the full-length cDNA encoding the human calbindin-D9k. FEBS Lett. 1992;307(2):224–8.

    Article  CAS  PubMed  Google Scholar 

  13. Ko SH, Choi KC, Oh GT, et al. Effect of dietary calcium and 1,25-(OH)2D3 on the expression of calcium transport genes in calbindin-D9k and -D28k double knockout mice. Biochem Biophys Res Commun. 2009;379(2):227–32.

    Article  CAS  PubMed  Google Scholar 

  14. Tinnanooru P, Dang VH, Nguyen TH, et al. Estrogen regulates the localization and expression of calbindin-D9k in the pituitary gland of immature male rats via the ERalpha-pathway. Mol Cell Endocrinol. 2008;285(1–2):26–33.

    Article  CAS  PubMed  Google Scholar 

  15. Yu SP, Choi DW. Na(+)-Ca2 + exchange currents in cortical neurons: concomitant forward and reverse operation and effect of glutamate. Eur J Neurosci. 1997;9(6):1273–81.

    Article  CAS  PubMed  Google Scholar 

  16. Yang H, Kim TH, Lee HH, et al. Distinct expression of the calcium exchangers, NCKX3 and NCX1, and their regulation by steroid in the human endometrium during the menstrual cycle. Reprod Sci. 2011;18(6):577–85.

    Article  CAS  PubMed  Google Scholar 

  17. Herrmann S, Lipp P, Wiesen K, et al. The cardiac sodium-calcium exchanger NCX1 is a key player in the initiation and maintenance of a stable heart rhythm. Cardiovasc Res. 2013;99(4):780–8.

    Article  CAS  PubMed  Google Scholar 

  18. Iwamoto T. Sodium-calcium exchange inhibitors: therapeutic potential in cardiovascular diseases. Future Cardiol. 2005;1(4):519–29.

    Article  CAS  PubMed  Google Scholar 

  19. Iwamoto T, Watanabe Y, Kita S, et al. Na+/Ca2+ exchange inhibitors: a new class of calcium regulators. Cardiovasc Hematol Disord. 2007;7(3):188–98.

    Article  CAS  Google Scholar 

  20. Azuma YT, Nishiyama K, Kita S, et al. Na(+)/Ca(2 +) exchanger 2-heterozygote knockout mice display decreased acetylcholine release and altered colonic motility in vivo. Neurogastroenterol Motil. 2012;24(12):e600–10.

    Article  CAS  PubMed  Google Scholar 

  21. van de Graaf SF, Hoenderop JG, Bindels RJ. Regulation of TRPV5 and TRPV6 by associated proteins. Am J Physiol Ren Physiol. 2006;290(6):F1295–302.

    Article  Google Scholar 

  22. Wang W, Knosp E, Tai G, et al. Differential effects of estrogen and estrogen receptor antagonist, ICI 182 780, on the expression of calbindin-D9k in rat pituitary prolactinoma GH(3) cells. Int J Clin Exp Pathol. 2014;7(12):8498–505.

    PubMed  PubMed Central  Google Scholar 

  23. Yang H, Lee GS, Yoo YM, et al. Sodium/potassium/calcium exchanger 3 is regulated by the steroid hormones estrogen and progesterone in the uterus of mice during the estrous cycle. Biochem Biophys Res Commun. 2009;385(2):279–83.

    Article  CAS  PubMed  Google Scholar 

  24. Krisinger J, Dann JL, Currie WD, et al. Calbindin-D9k mRNA is tightly regulated during the estrous cycle in the rat uterus. Mol Cell Endocrinol. 1992;86(1–2):119–23.

    CAS  PubMed  Google Scholar 

  25. Kimura J, Ono T, Sakamoto K, et al. Na+–Ca2+ exchanger expression and its modulation. Biol Pharm Bull. 2009;32(3):325–31.

    Article  CAS  PubMed  Google Scholar 

  26. Lee GS, Jeung EB. Uterine TRPV6 expression during the estrous cycle and pregnancy in a mouse model. Am J Physiol Endocrinol Metab. 2007;293(1):E132–8.

    Article  CAS  PubMed  Google Scholar 

  27. An BS, Ahn HJ, Kang HS, et al. Effects of estrogen and estrogenic compounds, 4-tert-octylphenol, and bisphenol a on the uterine contraction and contraction-associated proteins in rats. Mol Cell Endocrinol. 2013;375(1–2):27–34.

    Article  CAS  PubMed  Google Scholar 

  28. Dong XL, Zhang Y, Wong MS. Estrogen deficiency-induced Ca balance impairment is associated with decrease in expression of epithelial Ca transport proteins in aged female rats. Life Sci. 2014;96(1–2):26–32.

    Article  CAS  PubMed  Google Scholar 

  29. Yang H, Ahn C, Jeung EB. Differential expression of calcium transport genes caused by COMT inhibition in the duodenum, kidney and placenta of pregnant mice. Mol Cell Endocrinol. 2015;401:45–55.

    Article  CAS  PubMed  Google Scholar 

  30. Loffing J, Loffing-Cueni D, Valderrabano V, et al. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Ren Physiol. 2001;281(6):F1021–7.

    Article  CAS  Google Scholar 

  31. Pan Q, Nicholson AM, Barr H, et al. Identification of lineage-uncommitted, long-lived, label-retaining cells in healthy human esophagus and stomach, and in metaplastic esophagus. Gastroenterology. 2013;144(4):761–70.

    Article  PubMed  Google Scholar 

  32. Gonzalez G, Huang Q, Mashimo H. Characterization of oncocytes in deep esophageal glands. Dis Esophagus. 2016;29(6):670–80

    Article  CAS  PubMed  Google Scholar 

  33. Long JD, Orlando RC. Esophageal submucosal glands: structure and function. Am J Gastroenterol. 1999;94(10):2818–24.

    Article  CAS  PubMed  Google Scholar 

  34. Glickman JN, Blount PL, Sanchez CA, et al. Mucin core polypeptide expression in the progression of neoplasia in Barrett’s esophagus. Hum Pathol. 2006;37(10):1304–15.

    Article  CAS  PubMed  Google Scholar 

  35. Sun D, Wang X, Gai Z, et al. Bile acids but not acidic acids induce Barrett’s esophagus. Int J Clin Exp Pathol. 2015;8(2):1384–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lorinc E, Mellblom L, Oberg S. The immunophenotypic relationship between the submucosal gland unit, columnar metaplasia and squamous islands in the columnar-lined oesophagus. Histopathology. 2015;67(6):792–8.

    Article  PubMed  Google Scholar 

  37. Davison JM, Ellis ST, Foxwell TJ, et al. MUC2 expression is an adverse prognostic factor in superficial gastroesophageal adenocarcinomas. Hum Pathol. 2014;45(3):540–8.

    Article  CAS  PubMed  Google Scholar 

  38. Rubio-Gayosso I, Sierra-Ramirez A, Garcia-Vazquez A, et al. 17Beta-estradiol increases intracellular calcium concentration through a short-term and nongenomic mechanism in rat vascular endothelium in culture. J Cardiovasc Pharmacol. 2000;36(2):196–202.

    Article  CAS  PubMed  Google Scholar 

  39. Forstner G. Signal transduction, packaging and secretion of mucins. Annu Rev Physiol. 1995;57:585–605.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Ren C, Chen L, et al. Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure. Am J Physiol Heart Circ Physiol. 2010;298(5):H1472–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lieberman DA, Oehlke M, Helfand M. Risk factors for Barrett’s esophagus in community-based practice. GORGE consortium. Gastroenterology Outcomes Research Group in Endoscopy. Am J Gastroenterol. 1997;92(8):1293–7.

    CAS  PubMed  Google Scholar 

  42. Carter R, Brewer LA 3rd. Achalasia and esophageal carcinoma. Studies in early diagnosis for improved surgical management. Am J Surg. 1975;130(2):114–20.

    Article  CAS  PubMed  Google Scholar 

  43. Meijssen MA, Tilanus HW, van Blankenstein M, et al. Achalasia complicated by oesophageal squamous cell carcinoma: a prospective study in 195 patients. Gut. 1992;33(2):155–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Streitz JM Jr, Ellis FH Jr, Gibb SP, et al. Achalasia and squamous cell carcinoma of the esophagus: analysis of 241 patients. Ann Thorac Surg. 1995;59(6):1604–9.

    Article  PubMed  Google Scholar 

  45. Zendehdel K, Nyren O, Edberg A, et al. Risk of esophageal adenocarcinoma in achalasia patients, a retrospective cohort study in Sweden. Am J Gastroenterol. 2011;106(1):57–61.

    Article  PubMed  Google Scholar 

  46. Wang BJ, Zhang B, Yan SS, et al. Hormonal and reproductive factors and risk of esophageal cancer in women: a meta-analysis. Dis Esophagus. 2016;29(5):448–54.

    Article  CAS  PubMed  Google Scholar 

  47. Asanuma K, Iijima K, Shimosegawa T. Gender difference in gastro-esophageal reflux diseases. World J Gastroenterol. 2016;22(5):1800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant of Korean Government (MEST) (Nos. 2013-010514 and 2015R1A6A1A04020885).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Bae Jeung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Lee, D., Ahn, C. et al. Effects of estrogen on esophageal function through regulation of Ca2+-related proteins. J Gastroenterol 52, 929–939 (2017). https://doi.org/10.1007/s00535-016-1305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-016-1305-y

Keywords

Navigation