Skip to main content
Log in

Upregulated absorption of dietary palmitic acids with changes in intestinal transporters in non-alcoholic steatohepatitis (NASH)

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Palmitic acid is an important risk factor for the pathogenesis of non-alcoholic steatohepatitis (NASH), but changes in palmitic acid intestinal absorption in NASH are unclear. The aim of this study was to clarify changes in palmitic acid intestinal absorption and their association with the pathogenesis of NASH.

Methods

A total of 106 participants were recruited to the study, of whom 33 were control subjects (control group), 32 were patients with NASH Brunt stage 1–2 [early NASH (e-NASH)], and 41 were patients with NASH Brunt stage 3–4 [advanced NASH (a-NASH)]. 13C-labeled palmitate was administered directly into the duodenum of all participants by gastrointestinal endoscopy. Breath 13CO2 levels were measured to quantify palmitic acid absorption, and serum Apolipoprotein B-48 (ApoB-48) concentrations were measured after a test meal to quantify absorbed chylomicrons. Expressions of fatty acid (FA) transporters were also examined. The associations of breath 13CO2 levels with hepatic steatosis, fibrosis and insulin resistance was evaluated using laboratory data, elastography results and liver histology findings.

Results

Overall, 13CO2 excretion was significantly higher in e-NASH patients than in the control subjects and a-NASH patients (P < 0.01). e-NASH patients had higher serum ApoB-48 levels, indicating increased palmitic acid transport via chylomicrons in these patients. Jejunal mRNA and protein expressions of microsomal triglyceride transfer protein and cluster of differentiation 36 were also increased in both NASH patient groups. The 13CO2 excretion of e-NASH patients was significantly correlated with the degree of hepatic steatosis, fibrosis and insulin resistance (P = 0.005, P < 0.001, P = 0.019, respectively).

Conclusions

Significantly upregulated palmitic acid absorption by activation of its transporters was evident in patients with NASH, and clinical progression of NASH was related to palmitic acid absorption. These dietary changes are associated with the onset and progression of NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bedogni G, Miglioli L, Masutti F, et al. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology. 2005;42(1):44–52.

    Article  PubMed  Google Scholar 

  2. Fassio E, Alvarez E, Dominguez N, et al. Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology. 2004;40(4):820–6.

    PubMed  Google Scholar 

  3. Leamy AK, Egnatchik RA, Young JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 2013;52(1):165–74.

    Article  CAS  PubMed  Google Scholar 

  4. Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118(3):829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kohjima M, Enjoji M, Higuchi N, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med. 2007;20(3):351–8.

    CAS  PubMed  Google Scholar 

  6. Kamada Y, Takehara T, Hayashi N. Adipocytokines and liver disease. J Gastroenterol. 2008;43(11):811–22.

    Article  CAS  PubMed  Google Scholar 

  7. Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cabre E, Hernandez-Perez JM, Fluvia L, et al. Absorption and transport of dietary long-chain fatty acids in cirrhosis: a stable-isotope-tracing study. Am J Clin Nutr. 2005;81(3):692–701.

    CAS  PubMed  Google Scholar 

  9. Yamamoto Y, Hiasa Y, Murakami H, et al. Rapid alternative absorption of dietary long-chain fatty acids with upregulation of intestinal glycosylated CD36 in liver cirrhosis. Am J Clin Nutr. 2012;96(1):90–101.

    Article  CAS  PubMed  Google Scholar 

  10. Ochi H, Hirooka M, Koizumi Y, et al. Real-time tissue elastography for evaluation of hepatic fibrosis and portal hypertension in nonalcoholic fatty liver diseases. Hepatology. 2012;56(4):1271–8.

    Article  PubMed  Google Scholar 

  11. Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129(1):113–21.

    Article  PubMed  Google Scholar 

  12. Joshi-Barve S, Barve SS, Amancherla K, et al. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology. 2007;46(3):823–30.

    Article  CAS  PubMed  Google Scholar 

  13. Matteoni CA, Younossi ZM, Gramlich T, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413–9.

    Article  CAS  PubMed  Google Scholar 

  14. Brunt EM, Janney CG, Di Bisceglie AM, et al. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94(9):2467–74.

    Article  CAS  PubMed  Google Scholar 

  15. Kane JP, Hardman DA, Paulus HE. Heterogeneity of apolipoprotein B: isolation of a new species from human chylomicrons. Proc Natl Acad Sci USA. 1980;77(5):2465–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hiasa Y, Kamegaya Y, Nuriya H, et al. Protein kinase R is increased and is functional in hepatitis C virus-related hepatocellular carcinoma. Am J Gastroenterol. 2003;98(11):2528–34.

    CAS  PubMed  Google Scholar 

  17. Abumrad NA, el-Maghrabi MR, Amri EZ, et al. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993;268(24):17665–8.

  18. Siddiqi S, Sheth A, Patel F, et al. Intestinal caveolin-1 is important for dietary fatty acid absorption. Biochim Biophys Acta. 2013;1831(8):1311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hussain MM. A proposed model for the assembly of chylomicrons. Atherosclerosis. 2000;148(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  20. Milger K, Herrmann T, Becker C, et al. Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J Cell Sci. 2006;119(Pt 22):4678–88.

    Article  CAS  PubMed  Google Scholar 

  21. Besnard P, Niot I, Bernard A, et al. Cellular and molecular aspects of fat metabolism in the small intestine. Proc Nutr Soc. 1996;55(1b):19–37.

    Article  CAS  PubMed  Google Scholar 

  22. Alpers DH, Strauss AW, Ockner RK, et al. Cloning of a cDNA encoding rat intestinal fatty acid binding protein. Proc Natl Acad Sci USA. 1984;81(2):313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gordon JI, Alpers DH, Ockner RK, et al. The nucleotide sequence of rat liver fatty acid binding protein mRNA. J Biol Chem. 1983;258(5):3356–63.

    CAS  PubMed  Google Scholar 

  24. Iqbal J, Dai K, Seimon T, et al. IRE1beta inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metab. 2008;7(5):445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levy E, Harmel E, Laville M, et al. Expression of Sar1b enhances chylomicron assembly and key components of the coat protein complex II system driving vesicle budding. Arterioscler Thromb Vasc Biol. 2011;31(11):2692–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hsieh J, Longuet C, Maida A, et al. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology. 2009;137(3):997–1005.e1–4.

  27. Sasso M, Beaugrand M, de Ledinghen V, et al. Controlled attenuation parameter (CAP): a novel VCTE guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol. 2010;36(11):1825–35.

    Article  PubMed  Google Scholar 

  28. Hirooka M, Ochi H, Koizumi Y, et al. Splenic elasticity measured with real-time tissue elastography is a marker of portal hypertension. Radiology. 2011;261(3):960–8.

    Article  PubMed  Google Scholar 

  29. Koizumi Y, Hirooka M, Kisaka Y, et al. Liver fibrosis in patients with chronic hepatitis C: noninvasive diagnosis by means of real-time tissue elastography–establishment of the method for measurement. Radiology. 2011;258(2):610–7.

    Article  PubMed  Google Scholar 

  30. Sandrin L, Fourquet B, Hasquenoph JM, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705–13.

    Article  PubMed  Google Scholar 

  31. Abe M, Miyake T, Kuno A, et al. Association between Wisteria floribunda agglutinin-positive Mac-2 binding protein and the fibrosis stage of non-alcoholic fatty liver disease. J Gastroenterol. 2015;50(7):776–84.

    Article  CAS  PubMed  Google Scholar 

  32. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.

    Article  PubMed  Google Scholar 

  33. Murphy JL, Jones A, Brookes S, et al. The gastrointestinal handling and metabolism of [1-13C]palmitic acid in healthy women. Lipids. 1995;30(4):291–8.

    Article  CAS  PubMed  Google Scholar 

  34. Yao Y, Lu S, Huang Y, et al. Regulation of microsomal triglyceride transfer protein by apolipoprotein A-IV in newborn swine intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2011;300(2):G357–63.

    Article  CAS  PubMed  Google Scholar 

  35. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shanab AA, Scully P, Crosbie O, et al. Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with toll-like receptor 4 expression and plasma levels of interleukin 8. Dig Dis Sci. 2011;56(5):1524–34.

    Article  PubMed  Google Scholar 

  37. Hussain MM, Rava P, Walsh M, et al. Multiple functions of microsomal triglyceride transfer protein. Nutr Metab (Lond). 2012;9:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Greevenbroek MM, Robertus-Teunissen MG, Erkelens DW, et al. Participation of the microsomal triglyceride transfer protein in lipoprotein assembly in Caco-2 cells: interaction with saturated and unsaturated dietary fatty acids. J Lipid Res. 1998;39(1):173–85.

    PubMed  Google Scholar 

  39. Courtois F, Suc I, Garofalo C, et al. Iron-ascorbate alters the efficiency of Caco-2 cells to assemble and secrete lipoproteins. Am J Physiol Gastrointest Liver Physiol. 2000;279(1):G12–9.

    CAS  PubMed  Google Scholar 

  40. Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI, et al. Intestinal mucosal proliferation, apoptosis and oxidative stress in patients with liver cirrhosis. Ann Hepatol. 2013;12(2):301–7.

    PubMed  Google Scholar 

  41. Miquilena-Colina ME, Lima-Cabello E, Sanchez-Campos S, et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut. 2011;60(10):1394–402.

    Article  CAS  PubMed  Google Scholar 

  42. Poirier H, Degrace P, Niot I, et al. Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur J Biochem. 1996;238(2):368–73.

    Article  CAS  PubMed  Google Scholar 

  43. Miura K, Yang L, van Rooijen N, et al. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology. 2013;57(2):577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haidari M, Leung N, Mahbub F, et al. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J Biol Chem. 2002;277(35):31646–55.

    Article  CAS  PubMed  Google Scholar 

  45. Maharshi S, Sharma BC, Srivastava S. Malnutrition in cirrhosis increases morbidity and mortality. J Gastroenterol Hepatol. 2015;30(10):1507–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Hiroki Utsunomiya, Yasunori Yamamoto and Yoichi Hiasa designed the experiments; Hiroki Utsunomiya, Yasunori Yamamoto, Eiji Takeshita, Yoshio Ikeda and Yoichi Hiasa conducted experiments and analyzed data; Hiroki Utsunomiya, Yasunori Yamamoto and Yoichi Hiasa performed statistical analyses and wrote the manuscript. All authors revised the manuscript for important intellectual content. Yoichi Hiasa had primary responsibility for the final content. All authors read and approved the final manuscript. Hiroki Utsunomiya, Yasunori Yamamoto, Eiji Takeshita and Yoichi Hiasa obtained funding. This work was supported by a Grant-in-Aid for Scientific Research (JSPS KAKENHI 15K19335 to Yasunori Yamamoto, 15K09008 to Eiji Takeshita, and 15K09006 to Yoichi Hiasa) and by the Program for Enhancing Systematic Education in Graduate School from the Japanese Ministry of Education, Culture, Sports, Science and Technology (to Hiroki Utsunomiya), and from a Grant-in-Aid for Scientific Research and Development from the Japanese Ministry of Health, Labor and Welfare (to Yoichi Hiasa). The authors would like to thank Ms. Takana Fujino, Mr. Kenji Tanimoto, and Ms. Ayumi Sumisaki for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Hiasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utsunomiya, H., Yamamoto, Y., Takeshita, E. et al. Upregulated absorption of dietary palmitic acids with changes in intestinal transporters in non-alcoholic steatohepatitis (NASH). J Gastroenterol 52, 940–954 (2017). https://doi.org/10.1007/s00535-016-1298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-016-1298-6

Keywords

Navigation