Skip to main content

Advertisement

Log in

A novel method for screening colorectal cancer by infrared spectroscopy of peripheral blood mononuclear cells and plasma

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Early detection of colorectal cancer (CRC) can reduce mortality and morbidity. Current screening methods include colonoscopy and stool tests, but a simple low-cost blood test would increase compliance. This preliminary study assessed the utility of analyzing the entire bio-molecular profile of peripheral blood mononuclear cells (PBMCs) and plasma using Fourier transform infrared (FTIR) spectroscopy for early detection of CRC.

Methods

Blood samples were prospectively collected from 62 candidates for CRC screening/diagnostic colonoscopy or surgery for colonic neoplasia. PBMCs and plasma were separated by Ficoll gradient, dried on zinc selenide slides, and placed under a FTIR microscope. FTIR spectra were analyzed for biomarkers and classified by principal component and discriminant analyses. Findings were compared among diagnostic groups.

Results

Significant changes in multiple bands that can serve as CRC biomarkers were observed in PBMCs (p = ~0.01) and plasma (p = ~0.0001) spectra. There were minor but statistically significant differences in both blood components between healthy individuals and patients with benign polyps. Following multivariate analysis, the healthy individuals could be well distinguished from patients with CRC, and the patients with benign polyps were mostly distributed as a distinct subgroup within the overlap region. Leave-one-out cross-validation for evaluating method performance yielded an area under the receiver operating characteristics curve of 0.77, with sensitivity 81.5 % and specificity 71.4 %.

Conclusions

Joint analysis of the biochemical profile of two blood components rather than a single biomarker is a promising strategy for early detection of CRC. Additional studies are required to validate our preliminary clinical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CA:

Cancer antigen

CEA:

Carcinoembryonic antigen

CRC:

Colorectal cancer

FLDA:

Fisher linear discriminant analysis

FTIR:

Fourier transform infrared

PBMCs:

Peripheral blood mononuclear cells

PCA:

Principal component analysis

QDA:

Quadratic discriminant analysis

ROC:

Receiver operating characteristics

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    Article  PubMed  Google Scholar 

  2. Shapiro JA, Klabunde CN, Thompson TD, et al. Patterns of colorectal cancer test use, including CT colonography, in the 2010 National Health Interview Survey. Cancer Epidemiol Biomark Prev. 2012;21(6):895–904.

    Article  Google Scholar 

  3. Parra-Blanco A, Gimeno-García AZ, Quintero E, et al. Diagnostic accuracy of immunochemical versus guaiac faecal occult blood tests for colorectal cancer screening. J Gastroenterol. 2010;45(7):703–12.

    Article  CAS  PubMed  Google Scholar 

  4. Sturgeon CM, Duffy MJ, Stenman U-H, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem. 2008;54(12):e11–79.

    Article  CAS  PubMed  Google Scholar 

  5. Church TR, Wandell M, Lofton-Day C, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014;63(2):317–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Nichita C, Ciarloni L, Monnier-Benoit S, et al. A novel gene expression signature in peripheral blood mononuclear cells for early detection of colorectal cancer. Aliment Pharmacol Ther. 2014;39(5):507–17.

    Article  CAS  PubMed  Google Scholar 

  7. Mantsch HH, Chapman D. Infrared spectroscopy of biomolecules. New York: Wiley; 1996.

    Google Scholar 

  8. Argov S, Sahu RK, Bernshtain E, et al. Inflamatory bowel diseases as an intermediate stage between normal and cancer: a FTIR-microspectroscopy approach. Biopolymers. 2004;75(5):384–92.

    Article  CAS  PubMed  Google Scholar 

  9. Sahu R, Mordechai S. Fourier transform infrared spectroscopy in cancer detection. Future oncol. 2005;1(5):635–47.

    Article  CAS  PubMed  Google Scholar 

  10. Ladoire S, Martin F, Ghiringhelli F. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer immunol immunother CII. 2011;60(7):909–18.

    Article  CAS  PubMed  Google Scholar 

  11. Handy B. The clinical utility of tumor markers. Lab Med. 2009;40(2):99–103.

    Article  Google Scholar 

  12. Ostrovsky E, Zelig U, Gusakova I, et al. Detection of cancer using advanced computerized analysis of infrared spectra of peripheral blood. IEEE trans bio-med eng. 2013;60(2):343–53.

    Article  Google Scholar 

  13. Zelig U, Mordechai S, Shubinsky G, et al. Pre-screening and follow-up of childhood acute leukemia using biochemical infrared analysis of peripheral blood mononuclear cells. Biochim Biophys Acta. 2011;1810(9):827–35.

    Article  CAS  PubMed  Google Scholar 

  14. Bird B, Miljkovic M, Romeo MJ, et al. Infrared micro-spectral imaging: distinction of tissue types in axillary lymph node histology. BMC clinical pathology. 2008;8(1):8.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Toyran N, Lasch P, Naumann D, et al. Early alterations in myocardia and vessels of the diabetic rat heart: an FTIR microspectroscopic study. Biochem J. 2006;397(3):427–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Duda RO, Hart PE, Stork DG. Pattern classification. 2nd ed. New York: Wiley; 2012.

  17. Toll A, Fabius D, Hyslop T, et al. Prognostic significance of high-grade dysplasia in colorectal adenomas. Colorectal Dis. 2011;13(4):370–3.

    Article  CAS  PubMed  Google Scholar 

  18. Lasch P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom Intell Lab Syst. 2012;117:100–14.

    Article  CAS  Google Scholar 

  19. Movasaghi Z, Rehman S, Rehman IU. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43:134–79.

    Article  CAS  Google Scholar 

  20. Liu KZ, Xu M, Scott DA. Biomolecular characterisation of leucocytes by infrared spectroscopy. Br J Haematol. 2007;136(5):713–22.

    Article  CAS  PubMed  Google Scholar 

  21. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006;108(3):804–11.

    Article  CAS  PubMed  Google Scholar 

  22. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gounaris E, Blatner NR, Dennis K, et al. T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res. 2009;69(13):5490–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Tokuno K, Hazama S, Yoshino S, et al. Increased prevalence of regulatory T-cells in the peripheral blood of patients with gastrointestinal cancer. Anticancer Res. 2009;29(5):1527–32.

    PubMed  Google Scholar 

  25. Sasada T, Kimura M, Yoshida Y, et al. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies. Cancer. 2003;98(5):1089–99.

    Article  PubMed  Google Scholar 

  26. Salama P, Phillips M, Grieu F, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27(2):186–92.

    Article  PubMed  Google Scholar 

  27. Pagès F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353(25):2654–66.

    Article  PubMed  Google Scholar 

  28. Hands JR, Dorling KM, Abel P, et al. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples. J Biophotonics. 2014;7(3–4):189–99.

    Article  CAS  PubMed  Google Scholar 

  29. Gajjar K, Trevisan J, Owens G, et al. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer. Analyst. 2013;138(14):3917–26.

    Article  CAS  PubMed  Google Scholar 

  30. Ollesch J, Heinze M, Heise HM, et al. It’s in your blood: spectral biomarker candidates for urinary bladder cancer from automated FTIR spectroscopy. J Biophotonics. 2014;7(3–4):210–21.

    Article  CAS  PubMed  Google Scholar 

  31. Mead R, Duku M, Bhandari P, Cree IA. Circulating tumour markers can define patients with normal colons, benign polyps, and cancers. Br J Cancer. 2011;105(2):239–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wild N, Andres H, Rollinger W, et al. A combination of serum markers for the early detection of colorectal cancer. Clin Cancer Res. 2010;16(24):6111–21.

    Article  CAS  PubMed  Google Scholar 

  33. Seo JY, Chun J, Lee C, Hong KS, Im JP, Kim SG, Jung HC, Kim JS. Novel risk stratification for recurrence after endoscopic resection of advanced colorectal adenoma. Gastrointest Endosc. 2015;81(3):655–64.

    Article  PubMed  Google Scholar 

  34. Engwegen JY, Depla AC, Smits ME, et al. Detection of colorectal cancer by serum and tissue protein profiling: a prospective study in a population at risk. Biomarker Insights. 2008;3:375.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Yesil A, Babacan Abanonu G, Colak Y, et al. Prognostic significance of DR-70 levels in dysplastic colorectal polyps. Gastroenterol Res Pract. 2013;2013:1–7. Art. ID 275392. doi:10.1155/2013/275392.

    Article  Google Scholar 

  36. Vatandoost N, Ghanbari J, Mojaver M, et al. Early detection of colorectal cancer: from conventional methods to novel biomarkers. J Cancer Res Clin Oncol. 2015. doi:10.1007/s00432-015-1928-z.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ela Ostrovsky who participated in spectral data analysis. This work was funded in part by Todos Medical Ltd. and the Chief Scientist Office, Israel.

Conflict of interest

Dr. Udi Zelig, Omri Bar and Cheli Segev are employees at Todos Medical Ltd. Prof. Joseph Kapelushnik, Prof. Shaul Mordechai and Prof. Ilana Nathan serves as consultants to Todos Medical Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udi Zelig.

Additional information

E. Barlev and U. Zelig contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barlev, E., Zelig, U., Bar, O. et al. A novel method for screening colorectal cancer by infrared spectroscopy of peripheral blood mononuclear cells and plasma. J Gastroenterol 51, 214–221 (2016). https://doi.org/10.1007/s00535-015-1095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1095-7

Keywords

Navigation