Skip to main content

Advertisement

Log in

Role of milk fat globule-epidermal growth factor 8 in colonic inflammation and carcinogenesis

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Milk fat globule-epidermal growth factor 8 (MFG-E8) promotes phagocytic clearance of apoptotic cells to maintain normal tissue homeostasis. However, its functions in intestinal inflammation and carcinogenesis are unknown.

Methods

Experimental colitis was induced in MFG-E8 knockout (KO) and wild-type (WT) mice by dextran sodium sulfate (DSS) administration. Colon tissues were used for assessments of colitis activity and epithelial proliferation. A mouse colitis-associated cancer (CAC) model was induced by intraperitoneal injection of azoxymethane (AOM) and then the animals were given a single administration of DSS. A sporadic colon cancer model was established by repeated intraperitoneal injections of AOM. The role of MFG-E8 in epithelial proliferation with or without treatment of siRNA targeting αv-integrin was examined in vitro using a WST-1 assay.

Results

The severity of colitis in KO mice was greater than that in WT mice, while the proliferative potential of colonic epithelial cells in KO mice was lower during the regenerative phase. In both CAC and sporadic models, tumor size in KO was lower as compared to WT mice, while decreased tumor incidence was only found in the CAC model. In vitro findings showed that MFG-E8 promotes epithelial cell proliferation, and treatment with a siRNA targeting αv-integrin reduced the proliferation of Colon-26 cells stimulated with recombinant MFG-E8.

Conclusions

MFG-E8 promotes tumor growth regardless of the presence or absence of colonic inflammation, whereas colon tumor development is initiated by MFG-E8 under inflammatory conditions. These MFG-E8 functions may be dependent on integrin-mediated cellular signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krysko DV, D`Herde K, Vandenabeele P. Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis. 2006;11:1709–26.

    Article  PubMed  Google Scholar 

  2. Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell. 2010;140:619–30.

    Article  CAS  PubMed  Google Scholar 

  3. Gregory CD, Devitt A. The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically. Immunology. 2004;113:1–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lauber K, Blumenthal SG, Waibel M, Wesselborg S. Clearance of apoptotic cells: getting rid of the corpses. Mol Cell. 2004;14:277–87.

    Article  CAS  PubMed  Google Scholar 

  5. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000;407:784–8.

    Article  CAS  PubMed  Google Scholar 

  6. Miyasaka K, Hanayama R, Tanaka M, Nagata S. Expression of milk fat globule epidermal growth factor 8 in immature dendritic cells for engulfment of apoptotic cells. Eur J Immunol. 2004;34:1414–22.

    Article  CAS  PubMed  Google Scholar 

  7. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002;417:182–7.

    Article  CAS  PubMed  Google Scholar 

  8. Asano K, Miwa M, Miwa K, Hanayama R, Nagase H, Nagata S, et al. Masking of phosphatidylserine inhibits apoptotic cell engulfment and induces autoantibody production in mice. J Exp Med. 2004;200:459–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science. 2004;304:1147–50.

    Article  CAS  PubMed  Google Scholar 

  10. Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S, et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation. 2007;115:2168–77.

    Article  CAS  PubMed  Google Scholar 

  11. Thorp E, Tabas I. Mechanisms and consequences of efferocytosis in advanced atherosclerosis. J Leukoc Biol. 2009;86:1089–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fuller AD, Van Eldik LJ. MFG-E8 regulates microglial phagocytosis of apoptotic neurons. J Neuroimmune Pharmacol. 2008;3:246–56.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kusunoki R, Ishihara S, Aziz M, Oka A, Tada Y, Kinoshita Y. Roles of milk fat globule-epidermal growth factor 8 in intestinal inflammation. Digestion. 2012;85:103–7.

    Article  CAS  PubMed  Google Scholar 

  14. Aziz MM, Ishihara S, Mishima Y, Oshima N, Moriyama I, Yuki T, et al. MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontin-dependent alphavbeta3 integrin signaling. J Immunol. 2009;182:7222–32.

    Article  CAS  PubMed  Google Scholar 

  15. Otani A, Ishihara S, Aziz MM, Oshima N, Mishima Y, Moriyama I, et al. Intrarectal administration of milk fat globule epidermal growth factor-8 protein ameliorates murine experimental colitis. Int J Mol Med. 2012;29:349–56.

    CAS  PubMed  Google Scholar 

  16. Mishiro T, Kusunoki R, Otani A, Ansary MM, Tongu M, Harashima N, et al. Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8. Lab Invest. 2013;93:834–43.

    Article  CAS  PubMed  Google Scholar 

  17. Chogle A, Bu HF, Wang X, Brown JB, Chou PM, Tan XD. Milk fat globule-EGF factor 8 is a critical protein for healing of dextran sodium sulfate-induced acute colitis in mice. Mol Med. 2011;17:502–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Komura H, Miksa M, Wu R, Goyert SM, Wang P. Milk fat globule epidermal growth factor-factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol. 2009;182:581–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cui T, Miksa M, Wu R, Komura H, Zhou M, Dong W, et al. Milk fat globule epidermal growth factor 8 attenuates acute lung injury in mice after intestinal ischemia and reperfusion. Am J Respir Crit Care Med. 2010;181:238–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bu HF, Zuo XL, Wang X, Ensslin MA, Koti V, Hsueh W, et al. Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J Clin Invest. 2007;117:3673–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Wu R, Dong W, Wang Z, Jacob A, Cui T, Wang P. Enhancing apoptotic cell clearance mitigates bacterial translocation and promotes tissue repair after gut ischemia–reperfusion injury. Int J Mol Med. 2012;30:593–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhao QJ, Yu YB, Zuo XL, Dong YY, Li YQ. Milk fat globule-epidermal growth factor 8 is decreased in intestinal epithelium of ulcerative colitis patients and thereby causes increased apoptosis and impaired wound healing. Mol Med. 2012;18:497–506.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Ajakaiye MA, Jacob A, Wu R, Yang WL, Nicastro J, Coppa GF, et al. Recombinant human MFG-E8 attenuates intestinal injury and mortality in severe whole body irradiation in rats. PLoS One. 2012;7:e46540.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Silvestre JS, Théry C, Hamard G, Boddaert J, Aguilar B, Delcayre A, et al. Lactadherin promotes VEGF-dependent neovascularization. Nat Med. 2005;11:499–506.

    Article  CAS  PubMed  Google Scholar 

  25. Carrascosa C, Obula RG, Missiaglia E, Lehr HA, Delorenzi M, Frattini M, et al. MFG-E8/lactadherin regulates cyclins D1/D3 expression and enhances the tumorigenetic potential of mammary epithelial cells. Oncogene. 2012;31:1521–32.

    Article  CAS  PubMed  Google Scholar 

  26. Sugano G, Bernard-Pierrot I, Laé M, Battail C, Allory Y, Stransky N, et al. Milk fat globule-epidermal growth factor-factor VIII (MFGE8)/lactadherin promotes bladder tumor development. Oncogene. 2011;30:642–53.

    Article  CAS  PubMed  Google Scholar 

  27. Jinushi M, Nakazaki Y, Carrasco DR, Draganov D, Souders N, Johnson M, et al. Milk fat globule EGF-8 promotes melanoma progression through coordinated Akt and twist signaling in the tumor microenvironment. Cancer Res. 2008;68:8889–98.

    Article  CAS  PubMed  Google Scholar 

  28. Neutzner M, Lopez T, Feng X, Bergmann-Leitner ES, Leitner WW, Udey MC. MFG-E8/lactadherin promotes tumor growth in an angiogenesis-dependent transgenic mouse model of multistage carcinogenesis. Cancer Res. 2007;67:6777–85.

    Article  CAS  PubMed  Google Scholar 

  29. Jinushi M, Sato M, Kanamoto A, Itoh A, Nagai S, Koyasu S, et al. Milk fat globule epidermal growth factor-8 blockade triggers tumor destruction through coordinated cell-autonomous and immune-mediated mechanisms. J Exp Med. 2009;206:1317–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, Dranoff G. MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF. J Clin Invest. 2007;117:1902–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Moriyama I, Ishihara S, Rumi MA, Aziz MD, Mishima Y, Oshima N, et al. Decoy oligodeoxynucleotide targeting activator protein-1 (AP-1) attenuates intestinal inflammation in murine experimental colitis. Lab Invest. 2008;88:652–63.

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki R, Kohno H, Sugie S, Nakagama H, Tanaka T. Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis. 2006;27:162–9.

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka T, Kohno H, Sakata K, Yamada Y, Hirose Y, Sugie S, et al. Modifying effects of dietary capsaicin and rotenone on 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis. Carcinogenesis. 2002;8:1361–7.

    Article  Google Scholar 

  34. Neufert C, Becker C, Neurath MF. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc. 2007;2:1998–2004.

    Article  CAS  PubMed  Google Scholar 

  35. Endo H, Hosono K, Uchiyama T, Sakai E, Sugiyama M, Takahashi H, et al. Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut. 2011;60:1363–71.

    Article  CAS  PubMed  Google Scholar 

  36. Rosenberg DW, Giardina C, Tanaka T. Mouse models for the study of colon carcinogenesis. Carcinogenesis. 2009;30:183–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology. 2011;140:1807–16.

    Article  CAS  PubMed  Google Scholar 

  39. Cooper HS, Everley L, Chang WC, Pfeiffer G, Lee B, Murthy S, et al. The role of mutant Apc in the development of dysplasia and cancer in the mouse model of dextran sulfate sodium-induced colitis. Gastroenterology. 2001;121:1407–16.

    Article  CAS  PubMed  Google Scholar 

  40. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96.

    Article  CAS  PubMed  Google Scholar 

  41. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Okuyama T, Kurata S, Tomimori Y, Fukunishi N, Sato S, Osada M, et al. p63(TP63) elicits strong trans-activation of the MFG-E8/lactadherin/BA46 gene through interactions between the TA and DeltaN isoforms. Oncogene. 2008;27:308–17.

    Article  CAS  PubMed  Google Scholar 

  44. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

Kinoshita Y, Kusunoki R, Ishihara S, Oka A, Sonoyama H, Tada Y, Fukuba N, Oshima N, Moriyama I, Yuki T, and Kawashima K received research grants from Daiichi-Sankyo Pharm, Takeda Pharm, Astellas Pharm, AstraZeneca KK, Mitsubishi Tanabe Pharm and Eisai Pharm. Kinoshita Y received honoraria for lecture fees from Daiichi-Sankyo Pharm, Takeda Pharm, Astellas Pharm, AstraZeneca KK, and Eisai Pharm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunji Ishihara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

535_2014_1036_MOESM2_ESM.tif

Supplementary material 2 Supplemental Figure 1. Colon epithelial cell proliferation was lower in MFG-E8 KO mice as compared to WT mice. a Representative images showing ki67 staining in histological sections during recovery phase of DSS colitis (3 weeks). b Average number of ki67-positive cells per colon crypt (3 weeks, blank bar WT, black bar KO) (WT, n = 4; KO, n = 4. *p < 0.05 vs. WT) (TIFF 2025 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusunoki, R., Ishihara, S., Tada, Y. et al. Role of milk fat globule-epidermal growth factor 8 in colonic inflammation and carcinogenesis. J Gastroenterol 50, 862–875 (2015). https://doi.org/10.1007/s00535-014-1036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-014-1036-x

Keywords

Navigation