Skip to main content
Log in

Anti-TNF-alpha loss of response is associated with a decreased percentage of FoxP3+ T cells and a variant NOD2 genotype in patients with Crohn’s disease

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Anti-TNF-α therapies interact with the tolerogenic response in patients with Crohn’s disease, modulating inflammation. However, drug levels and the genetic background may affect this interaction.

Methods

Patients with Crohn’s disease in remission on biologic monotherapy were enrolled in this study. FoxP3+ lymphocytes, NOD2 genotype, serum cytokine, anti-TNF-α levels, and anti-drug antibodies were evaluated. Regulatory T cell response to infliximab was evaluated in vitro.

Results

Fifty-seven patients were included. Thirty-nine patients (68.4 %) were receiving non-intensified biologic therapy whereas 18 patients (31.6 %) were under an intensified biologic schedule due to loss of response. Eleven intensified patients (61.1 %) showed a variant NOD2 genotype vs 9 on non-intensified biologics (23 %, p < 0.01). Percentage of FoxP3+ T cells and serum free anti-TNF-α levels were significantly higher in patients with a wild-type vs variant NOD2 genotype, either under non-intensified or intensified schedule. Increasing amounts of infliximab significantly increased the expression of FoxP3+ T cells and anti-TNF-α levels in the supernatant from wild-type NOD2 patients cultured cells whereas the induction of FoxP3+ T cells and anti-TNF-α levels in the supernatant from variant NOD2 patients cultured cells were significantly lower. TNF-α and IL-10 showed a correlation with the FoxP3+ T cell population percentage and serum levels of anti-TNF-α, irrespective of NOD2 genotype. Eight variant NOD2 patients (66.6 %) vs 4 wild-type NOD2 patients (8.8 %) showed a perianal phenotype (p = 0.01). A significant reduction of the percentage of FoxP3+ T cells and serum levels of anti-TNF-α was observed in patients with the associated perianal disease.

Conclusion

Anti-TNF-α loss of response is associated with a decreased percentage of FoxP3+ T cells and a variant NOD2 genotype in patients with CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29.

    Article  CAS  PubMed  Google Scholar 

  2. Sartor RB. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. Am J Gastroenterol. 1997;92:5S–11S.

    CAS  PubMed  Google Scholar 

  3. Obermeier F, Dunger N, Strauch UG, et al. CpG motifs of bacterial DNA essentially contribute to the perpetuation of chronic intestinal inflammation. Gastroenterology. 2005;129:913–27.

    Article  CAS  PubMed  Google Scholar 

  4. Elson CO, Cong Y, McCracken VJ, et al. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev. 2005;206:260–76.

    Article  PubMed  Google Scholar 

  5. Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lees CW, Barrett JC, Parkes M, et al. New IBD genetics: common pathways with other diseases. Gut. 2011;60:1739–53.

    Article  CAS  PubMed  Google Scholar 

  7. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  CAS  PubMed  Google Scholar 

  8. Gutierrez A, Frances R, Amoros A, et al. Cytokine association with bacterial DNA in serum of patients with inflammatory bowel disease. Inflamm Bowel Dis. 2009;15:508–14.

    Article  PubMed  Google Scholar 

  9. Gutierrez A, Holler E, Zapater P, et al. Antimicrobial peptide response to blood translocation of bacterial DNA in Crohn’s disease is affected by NOD2/CARD15 genotype. Inflamm Bowel Dis. 2011;17:1641–50.

    Article  PubMed  Google Scholar 

  10. Roncarolo MG, Gregori S, Battaglia M, et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50.

    Article  CAS  PubMed  Google Scholar 

  11. Sakaguchi S, Miyara M, Costantino CM, et al. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10:490–500.

    Article  CAS  PubMed  Google Scholar 

  12. Danese S, Fiorino G, Rutella S. Regulatory T-cell therapy for Crohn’s disease: in vivo veritas. Gastroenterology. 2012;143:1135–8.

    Article  PubMed  Google Scholar 

  13. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192:295–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+ CD25+ regulatory T cells. J Immunol. 2003;170:3939–43.

    Article  CAS  PubMed  Google Scholar 

  15. Uhlig HH, Coombes J, Mottet C, et al. Characterization of Foxp3+ CD4+ CD25+ and IL-10-secreting CD4+ CD25+ T cells during cure of colitis. J Immunol. 2006;177:5852–60.

    Article  CAS  PubMed  Google Scholar 

  16. Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128:1868–78.

    Article  CAS  PubMed  Google Scholar 

  17. Desreumaux P, Foussat A, Allez M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology. 2012;143(1207–1217):e1201–2.

    Google Scholar 

  18. Danese S, Fiorino G, Reinisch W. Review article: causative factors and the clinical management of patients with Crohn’s disease who lose response to anti-TNF-alpha therapy. Aliment Pharmacol Ther. 2011;34:1–10.

    Article  CAS  PubMed  Google Scholar 

  19. Ben-Horin S, Chowers Y. Review article: loss of response to anti-TNF treatments in Crohn’s disease. Aliment Pharmacol Ther. 2011;33:987–95.

    Article  CAS  PubMed  Google Scholar 

  20. Dassopoulos T, Sninsky CA. Optimizing immunomodulators and anti-TNF agents in the therapy of Crohn disease. Gastroenterol Clin North Am. 2012;41:393–409.

    Article  PubMed  Google Scholar 

  21. Li Z, Arijs I, De Hertogh G, et al. Reciprocal changes of Foxp3 expression in blood and intestinal mucosa in IBD patients responding to infliximab. Inflamm Bowel Dis. 2010;16:1299–310.

    Article  CAS  PubMed  Google Scholar 

  22. Boschetti G, Nancey S, Sardi F, et al. Therapy with anti-TNFalpha antibody enhances number and function of Foxp3(+) regulatory T cells in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17:160–70.

    Article  PubMed  Google Scholar 

  23. Di Sabatino A, Biancheri P, Piconese S, et al. Peripheral regulatory T cells and serum transforming growth factor-beta: relationship with clinical response to infliximab in Crohn’s disease. Inflamm Bowel Dis. 2010;16:1891–7.

    Article  PubMed  Google Scholar 

  24. Guidi L, Felice C, Procoli A, et al. FOXP3(+) T regulatory cell modifications in inflammatory bowel disease patients treated with anti-TNFalpha agents. Bio Med Res Int. 2013;2013:286368.

    Google Scholar 

  25. Grundstrom J, Linton L, Thunberg S, et al. Altered immunoregulatory profile during anti-tumour necrosis factor treatment of patients with inflammatory bowel disease. Clin Exp Immunol. 2012;169:137–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Veltkamp C, Anstaett M, Wahl K, et al. Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFalpha treatment. Gut. 2011;60:1345–53.

    Article  CAS  PubMed  Google Scholar 

  27. Bell MP, Svingen PA, Rahman MK, et al. FOXP3 regulates TLR10 expression in human T regulatory cells. J Immunol. 2007;179:1893–900.

    Article  CAS  PubMed  Google Scholar 

  28. Rahman MK, Midtling EH, Svingen PA, et al. The pathogen recognition receptor NOD2 regulates human FOXP3+ T cell survival. J Immunol. 2010;184:7247–56.

    Article  CAS  PubMed  Google Scholar 

  29. Sands BE. From symptom to diagnosis: clinical distinctions among various forms of intestinal inflammation. Gastroenterology. 2004;126:1518–32.

    Article  PubMed  Google Scholar 

  30. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19(Suppl A):5–36.

    Google Scholar 

  31. Hampe J, Grebe J, Nikolaus S, et al. Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet. 2002;359:1661–5.

    Article  CAS  PubMed  Google Scholar 

  32. Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348:601–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rutgeerts P, Van AG, Vermeire S. Review article: infliximab therapy for inflammatory bowel disease—seven years on. Aliment Pharmacol Ther. 2006;23:451–63.

    Article  CAS  PubMed  Google Scholar 

  34. Candon S, Mosca A, Ruemmele F, et al. Clinical and biological consequences of immunization to infliximab in pediatric Crohn’s disease. Clin Immunol. 2006;118:11–9.

    Article  CAS  PubMed  Google Scholar 

  35. Gutierrez A, Scharl M, Sempere L, et al. Genetic susceptibility to increased bacterial translocation influences the response to biological therapy in patients with Crohn’s disease. Gut. 2014;63:272–80.

    CAS  PubMed  Google Scholar 

  36. Long SH, He Y, Chen MH, et al. Activation of PI3K/Akt/mTOR signaling pathway triggered by PTEN downregulation in the pathogenesis of Crohn’s disease. J Dig Dis. 2013;14:662–9.

    Article  CAS  PubMed  Google Scholar 

  37. Huehn J, Polansky JK, Hamann A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol. 2009;9:83–9.

    Article  CAS  PubMed  Google Scholar 

  38. Sandborn WJ, Fazio VW, Feagan BG, et al. AGA technical review on perianal Crohn’s disease. Gastroenterology. 2003;125:1508–30.

    Article  PubMed  Google Scholar 

  39. Galandiuk S, Kimberling J, Al-Mishlab TG, et al. Perianal Crohn disease: predictors of need for permanent diversion. Ann Surg. 2005;241:796–801 (discussion 801–792).

    Article  PubMed Central  PubMed  Google Scholar 

  40. Crawford NP, Colliver DW, Eichenberger MR, et al. CARD15 genotype–phenotype relationships in a small inflammatory bowel disease population with severe disease affection status. Dig Dis Sci. 2007;52:2716–24.

    Article  CAS  PubMed  Google Scholar 

  41. Alvarez-Lobos M, Arostegui JI, Sans M, et al. Crohn’s disease patients carrying Nod2/CARD15 gene variants have an increased and early need for first surgery due to stricturing disease and higher rate of surgical recurrence. Ann Surg. 2005;242:693–700.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Rutgeerts P, D’Haens G, Targan S, et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology. 1999;117:761–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hanauer SB, Wagner CL, Bala M, et al. Incidence and importance of antibody responses to infliximab after maintenance or episodic treatment in Crohn’s disease. Clin Gastroenterol Hepatol. 2004;2:542–53.

    Article  CAS  PubMed  Google Scholar 

  44. Rutgeerts P, Feagan BG, Lichtenstein GR, et al. Comparison of scheduled and episodic treatment strategies of infliximab in Crohn’s disease. Gastroenterology. 2004;126:402–13.

    Article  CAS  PubMed  Google Scholar 

  45. Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 2004;200:277–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Saruta M, Yu QT, Fleshner PR, et al. Characterization of FOXP3+ CD4+ regulatory T cells in Crohn’s disease. Clin immunol. 2007;125:281–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by Grant PI13/1443 from the Instituto de Salud Carlos III, Madrid, Spain.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Francés.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 515 kb)

Supplementary material 2 (TIFF 4162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juanola, O., Moratalla, A., Gutiérrez, A. et al. Anti-TNF-alpha loss of response is associated with a decreased percentage of FoxP3+ T cells and a variant NOD2 genotype in patients with Crohn’s disease. J Gastroenterol 50, 758–768 (2015). https://doi.org/10.1007/s00535-014-1020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-014-1020-5

Keywords

Navigation