Skip to main content

Advertisement

Log in

The formation of intracellular glyceraldehyde-derived advanced glycation end-products and cytotoxicity

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Nonalcoholic steatohepatitis (NASH) is a feature of metabolic syndrome. Advanced glycation end-products (AGEs) are formed by the Maillard reaction, which contributes to aging and to certain pathological complications of diabetes. A recent study has suggested that glyceraldehyde-derived AGEs (Glycer-AGEs) are elevated in the sera of patients with NASH. Furthermore, immunohistochemistry of Glycer-AGEs showed intense staining in the livers of patients with NASH. The present study aimed to examine the effect of intracellular Glycer-AGEs on hepatocellular carcinoma (Hep3B) cells.

Methods

Cell viability was determined by the WST-1 assay. The slot blot and Western blot were used to detect intracellular Glycer-AGEs, and their localization was analyzed by confocal microscopy. Real-time reverse transcription-polymerase chain reaction was used to quantify the mRNA for the acute phase reactant C-reactive protein (CRP).

Results

Glyceraldehyde (GA), which is the precursor of Glycer-AGEs, induced a concentration- and time-dependent increase in cell death, which was associated with an increase in intracellular Glycer-AGEs formation. Aminoguanidine (AG), which prevents AGEs formation, inhibited the formation of intracellular Glycer-AGEs and prevented cell death. Among the intracellular Glycer-AGEs that were formed, heat shock cognate 70 (Hsc70) was identified as a GA-modified protein, and its modification reduced the activity of Hsc70. Furthermore, intracellular Glycer-AGEs increased the CRP mRNA concentration.

Conclusions

These results suggest that intracellular Glycer-AGEs play important roles in promoting inflammation and hepatocellular death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980;55:434–8.

    CAS  PubMed  Google Scholar 

  2. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–31.

    Article  CAS  PubMed  Google Scholar 

  3. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–9.

    Article  CAS  PubMed  Google Scholar 

  4. Dam-Larsen S, Franzmann M, Andersen IB, Christoffersen P, Jensen LB, Sørensen TI, et al. Long term prognosis of fatty liver: risk of chronic liver disease and death. Gut. 2004;53:750–5.

    Article  CAS  PubMed  Google Scholar 

  5. Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50:1844–50.

    Article  CAS  PubMed  Google Scholar 

  6. Chitturi S, Abeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, et al. NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology. 2002;35:373–9.

    Article  CAS  PubMed  Google Scholar 

  7. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;37:917–23.

    Article  PubMed  Google Scholar 

  8. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–5.

    Article  CAS  PubMed  Google Scholar 

  9. Al-Abed Y, Kapurniotu A, Bucala R. Advanced glycation end products: detection and reversal. Methods Enzymol. 1999;309:152–72.

    Article  CAS  PubMed  Google Scholar 

  10. Vlassara H, Palace MR. Diabetes and advanced glycation endproducts. J Intern Med. 2002;251:87–101.

    Article  CAS  PubMed  Google Scholar 

  11. Glomb MA, Monnier VM. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem. 1995;270:10017–26.

    Article  CAS  PubMed  Google Scholar 

  12. Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999;344:109–16.

    Article  CAS  PubMed  Google Scholar 

  13. Takeuchi M, Bucala R, Suzuki T, Ohkubo T, Yamazaki M, Koike T, et al. Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J Neuropathol Exp Neurol. 2000;59:1094–105.

    CAS  PubMed  Google Scholar 

  14. Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, et al. Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun. 2002;290:973–8.

    Article  CAS  PubMed  Google Scholar 

  15. Yamagishi S, Inagaki Y, Okamoto T, Amano S, Koga K, Takeuchi M, et al. Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J Biol Chem. 2002;277:20309–15.

    Article  CAS  PubMed  Google Scholar 

  16. Hyogo H, Yamagishi S, Iwamoto K, Arihiro K, Takeuchi M, Sato T, et al. Elevated levels of serum advanced glycation end products in patients with non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2007;22:1112–9.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida T, Yamagishi S, Nakamura K, Matsui T, Imaizumi T, Takeuchi M, et al. Pigment epithelium-derived factor (PEDF) inhibits advanced glycation end product (AGE)-induced C-reactive protein expression in hepatoma cells by suppressing Rac-1 activation. FEBS Lett. 2006;580:2788–96.

    Article  CAS  PubMed  Google Scholar 

  18. Iwamoto K, Kanno K, Hyogo H, Yamagishi S, Takeuchi M, Tazuma S, et al. Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells. J Gastroenterol. 2008;43:298–304.

    Article  CAS  PubMed  Google Scholar 

  19. Takeuchi M, Makita Z, Bucala R, Suzuki T, Koike T, Kameda Y. Immunological evidence that non-carboxymethyllysine advanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo. Mol Med. 2000;6:114–25.

    CAS  PubMed  Google Scholar 

  20. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science. 1986;232:1629–32.

    Article  CAS  PubMed  Google Scholar 

  21. Nicholls K, Mandel TE. Advanced glycosylation end-products in experimental murine diabetic nephropathy: effect of islet isografting and of aminoguanidine. Lab Invest. 1989;60:486–91.

    CAS  PubMed  Google Scholar 

  22. Khalifah RG, Baynes JW, Hudson BG. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun. 1999;257:251–8.

    Article  CAS  PubMed  Google Scholar 

  23. Price DL, Rhett PM, Thorpe SR, Baynes JW. Chelating activity of advanced glycation end-product inhibitors. J Biol Chem. 2001;276:48967–72.

    Article  CAS  PubMed  Google Scholar 

  24. Carbone DL, Doorn JA, Kiebler Z, Sampey BP, Petersen DR. Inhibition of Hsp72-mediated protein refolding by 4-hydroxy-2-nonenal. Chem Res Toxicol. 2004;17:1459–67.

    Article  CAS  PubMed  Google Scholar 

  25. Rodríguez-Ariza A, López-Sánchez LM, González R, Corrales FJ, López P, Bernardos A, et al. Altered protein expression and protein nitration pattern during d-galactosamine-induced cell death in human hepatocytes: a proteomic analysis. Liver Int. 2005;25:1259–69.

    Article  PubMed  Google Scholar 

  26. Daugaard M, Rohde M, Jäättelä M. The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett. 2007;581:3702–10.

    Article  CAS  PubMed  Google Scholar 

  27. Canbakan B, Senturk H, Tahan V, Hatemi H, Balci H, Toptas T, et al. Clinical, biochemical and histological correlations in a group of non-drinker subjects with non-alcoholic fatty liver disease. Acta Gastroenterol Belg. 2007;70:277–84.

    CAS  PubMed  Google Scholar 

  28. Bell DS, Allbright E. The multifaceted associations of hepatobiliary disease and diabetes. Endocr Pract. 2007;13:300–12.

    PubMed  Google Scholar 

  29. Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, et al. Hepatocyte apoptosis and FAS expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125:437–43.

    Article  PubMed  Google Scholar 

  30. Ribeiro PS, Cortez-Pinto H, Solá S, Castro RE, Ramalho RM, Baptista A, et al. Hepatocyte apoptosis, expression of death receptors, and activation of NF-kappaB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am J Gastroenterol. 2004;99:1708–17.

    Article  CAS  PubMed  Google Scholar 

  31. Takeuchi M, Yamagishi S. Alternative routes for the formation of glyceraldehyde-derived AGEs (TAGE) in vivo. Med Hypotheses. 2004;63:453–5.

    Article  CAS  PubMed  Google Scholar 

  32. Taniguchi S, Okinaka M, Tanigawa K, Miwa I. Difference in mechanism between glyceraldehyde- and glucose-induced insulin secretion from isolated rat pancreatic islets. J Biochem. 2000;127:289–95.

    CAS  PubMed  Google Scholar 

  33. Takahashi H, Tran PO, LeRoy E, Harmon JS, Tanaka Y, Robertson RP. d-Glyceraldehyde causes production of intracellular peroxide in pancreatic islets, oxidative stress, and defective beta cell function via non-mitochondrial pathways. J Biol Chem. 2004;279:37316–23.

    Article  CAS  PubMed  Google Scholar 

  34. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun. 2003;300:216–22.

    Article  CAS  PubMed  Google Scholar 

  35. Hamelin M, Mary J, Vostry M, Friguet B, Bakala H. Glycation damage targets glutamate dehydrogenase in the rat liver mitochondrial matrix during aging. FEBS J. 2007;274:5949–61.

    Article  CAS  PubMed  Google Scholar 

  36. Kumar PA, Kumar MS, Reddy GB. Effect of glycation on alpha-crystallin structure and chaperone-like function. Biochem J. 2007;408:251–8.

    Article  CAS  PubMed  Google Scholar 

  37. Schalkwijk CG, van Bezu J, van der Schors RC, Uchida K, Stehouwer CD, van Hinsbergh VW. Heat-shock protein 27 is a major methylglyoxal-modified protein in endothelial cells. FEBS Lett. 2006;580:1565–70.

    Article  CAS  PubMed  Google Scholar 

  38. Gomes RA, Miranda HV, Silva MS, Graça G, Coelho AV, Ferreira AE, et al. Yeast protein glycation in vivo by methylglyoxal. Molecular modification of glycolytic enzymes and heat shock proteins. FEBS J. 2006;273:5273–87.

    Article  CAS  PubMed  Google Scholar 

  39. Yoneda M, Mawatari H, Fujita K, Iida H, Yonemitsu K, Kato S, et al. High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH. J Gastroenterol. 2007;42:573–82.

    Article  CAS  PubMed  Google Scholar 

  40. Targher G, Bertolini L, Rodella S, Lippi G, Franchini M, Zoppini G, et al. NASH predicts plasma inflammatory biomarkers independently of visceral fat in men. Obesity. 2008;16:1394–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research (B), #19300254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takino, Ji., Kobayashi, Y. & Takeuchi, M. The formation of intracellular glyceraldehyde-derived advanced glycation end-products and cytotoxicity. J Gastroenterol 45, 646–655 (2010). https://doi.org/10.1007/s00535-009-0193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0193-9

Keywords

Navigation