Skip to main content

Advertisement

Log in

Differential gene expression in normal esophagus and Barrett’s esophagus

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose

As the premalignant lesion of human esophageal adenocarcinoma (EAC), Barrett’s esophagus (BE) is characterized by intestinal metaplasia in the normal esophagus (NE). Gene expression profiling with microarray and serial analysis of gene expression (SAGE) may help us understand the potential molecular mechanism of human BE.

Methods

We analyzed three microarray datasets (two cDNA arrays and one oligonucleotide array) and one SAGE dataset with statistical tools, significance analysis of microarrays (SAM) and SAGE(Poisson), to identify individual genes differentially expressed in BE. Gene set enrichment analysis (GSEA) was used to identify a priori defined sets of genes that were differentially expressed. These gene sets were grouped according to either certain signaling pathways (GSEA curated), or the presence of consensus binding sequences of known transcription factors (GSEA motif). Immunohistochemical staining (IHC) was used to validate differential gene expression.

Results

Both SAM and SAGE(Poisson) identified 68 differentially expressed genes (55 BE genes and 13 NE genes) with an arbitrary cutoff ratio (≥4-fold). With IHC on matched pairs of NE and BE tissues from 6 patients, these genes were grouped into 6 categories: category I (25 genes only expressed in BE), category II (5 genes only expressed in NE), category III (8 genes expressed more in BE than in NE), and category IV (2 genes expressed more in NE than in BE). Differential expression of the remaining genes was not confirmed by IHC either due to false discovery (category V), or lack of proper antibodies (category VI). Besides individual genes, the TGFβ pathway and several transcription factors (CDX2, HNF1, and HNF4) were identified by GSEA as enriched pathways and motifs in BE. Apart from 9 target genes known to be up-regulated in BE, IHC staining confirmed up-regulation of 19 additional CDX1 and CDX2 target genes in BE.

Conclusion

Our data suggested an important role of CDX1 and CDX2 in the development of BE. The IHC-confirmed gene list will lead to future studies on the molecular mechanism of BE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BE:

Barrett’s esophagus

EAC:

Esophageal adenocarcinoma

FDR:

False discovery rate

GenMapp:

Gene Map Annotator and Pathway Profiler

GO:

Gene ontology

GSEA:

Gene set enrichment analysis

IHC:

Immunohistochemical staining

IM:

Intestinal metaplasia

NE:

Normal esophagus

SAGE:

Serial analysis of gene expression

SAM:

Significance analysis of microarrays

References

  1. Chen X, Yang CS. Esophageal adenocarcinoma: a review and perspectives on the mechanism of carcinogenesis and chemoprevention. Carcinogenesis. 2001;22:1119–29.

    Article  PubMed  CAS  Google Scholar 

  2. Jankowski JA, Harrison RF, Perry I, Balkwill F, Tselepis C. Barrett’s metaplasia. Lancet. 2000;356:2079–85.

    Article  PubMed  CAS  Google Scholar 

  3. Fitzgerald RC. Barrett’s oesophagus and oesophageal adenocarcinoma: how does acid interfere with cell proliferation and differentiation? Gut. 2005;54(Suppl 1):i21–6.

    Article  PubMed  Google Scholar 

  4. Krishnadath KK. Novel findings in the pathogenesis of esophageal columnar metaplasia or Barrett’s esophagus. Curr Opin Gastroenterol. 2007;23:440–5.

    Article  PubMed  Google Scholar 

  5. van Baal JW, Krishnadath KK. High throughput techniques for characterizing the expression profile of Barrett’s esophagus. Dis Esophagus. 2008;21:634–40.

    Article  PubMed  Google Scholar 

  6. Barrett MT, Yeung KY, Ruzzo WL, Hsu L, Blount PL, Sullivan R, et al. Transcriptional analyses of Barrett’s metaplasia and normal upper GI mucosae. Neoplasia. 2002;4:121–8.

    Article  PubMed  Google Scholar 

  7. Fox CA, Sapinoso LM, Zhang H, Zhang W, McLeod HL, Petroni GR, et al. Altered expression of TFF-1 and CES-2 in Barrett’s esophagus and associated adenocarcinomas. Neoplasia. 2005;7:407–16.

    Article  PubMed  CAS  Google Scholar 

  8. Gomes LI, Esteves GH, Carvalho AF, Cristo EB, Hirata R Jr, Martins WK, et al. Expression profile of malignant and nonmalignant lesions of esophagus and stomach: differential activity of functional modules related to inflammation and lipid metabolism. Cancer Res. 2005;65:7127–36.

    Article  PubMed  CAS  Google Scholar 

  9. Greenawalt DM, Duong C, Smyth GK, Ciavarella ML, Thompson NJ, Tiang T, et al. Gene expression profiling of esophageal cancer: comparative analysis of Barrett’s esophagus, adenocarcinoma, and squamous cell carcinoma. Int J Cancer. 2007;120:1914–21.

    Article  PubMed  CAS  Google Scholar 

  10. Hao Y, Triadafilopoulos G, Sahbaie P, Young HS, Omary MB, Lowe AW. Gene expression profiling reveals stromal genes expressed in common between Barrett’s esophagus and adenocarcinoma. Gastroenterology. 2006;131:925–33.

    Article  PubMed  CAS  Google Scholar 

  11. Helm J, Enkemann SA, Coppola D, Barthel JS, Kelley ST, Yeatman TJ. Dedifferentiation precedes invasion in the progression from Barrett’s metaplasia to esophageal adenocarcinoma. Clin Cancer Res. 2005;11:2478–85.

    Article  PubMed  CAS  Google Scholar 

  12. Kimchi ET, Posner MC, Park JO, Darga TE, Kocherginsky M, Karrison T, et al. Progression of Barrett’s metaplasia to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. Cancer Res. 2005;65:3146–54.

    PubMed  CAS  Google Scholar 

  13. Ostrowski J, Mikula M, Karczmarski J, Rubel T, Wyrwicz LS, Bragoszewski P, et al. Molecular defense mechanisms of Barrett’s metaplasia estimated by an integrative genomics. J Mol Med. 2007;85:733–43.

    Article  PubMed  CAS  Google Scholar 

  14. Ostrowski J, Rubel T, Wyrwicz LS, Mikula M, Bielasik A, Butruk E, et al. Three clinical variants of gastroesophageal reflux disease form two distinct gene expression signatures. J Mol Med. 2006;84:872–82.

    Article  PubMed  Google Scholar 

  15. Pohler E, Craig AL, Cotton J, Lawrie L, Dillon JF, Ross P, et al. The Barrett’s antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage. Mol Cell Proteomics. 2004;3:534–47.

    Article  PubMed  CAS  Google Scholar 

  16. Selaru FM, Zou T, Xu Y, Shustova V, Yin J, Mori Y, et al. Global gene expression profiling in Barrett’s esophagus and esophageal cancer: a comparative analysis using cDNA microarrays. Oncogene. 2002;21:475–8.

    Article  PubMed  CAS  Google Scholar 

  17. van Baal JW, Milano F, Rygiel AM, Bergman JJ, Rosmolen WD, van Deventer SJ, et al. A comparative analysis by SAGE of gene expression profiles of Barrett’s esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology. 2005;129:1274–81.

    Article  PubMed  Google Scholar 

  18. Wang S, Zhan M, Yin J, Abraham JM, Mori Y, Sato F, et al. Transcriptional profiling suggests that Barrett’s metaplasia is an early intermediate stage in esophageal adenocarcinogenesis. Oncogene. 2006;25:3346–56.

    Article  PubMed  CAS  Google Scholar 

  19. Xu Y, Selaru FM, Yin J, Zou TT, Shustova V, Mori Y, et al. Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett’s esophagus and esophageal cancer. Cancer Res. 2002;62:3493–7.

    PubMed  CAS  Google Scholar 

  20. van Baal JW, Diks SH, Wanders RJ, Rygiel AM, Milano F, Joore J, et al. Comparison of kinome profiles of Barrett’s esophagus with normal squamous esophagus and normal gastric cardia. Cancer Res. 2006;66:11605–12.

    Article  PubMed  Google Scholar 

  21. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116–21.

    Article  PubMed  CAS  Google Scholar 

  22. Cai L, Huang H, Blackshaw S, Liu JS, Cepko C, Wong WH. Clustering analysis of SAGE data using a Poisson approach. Genome Biol. 2004;5:R51.

    Article  PubMed  Google Scholar 

  23. Lewin K, Appelman H. Barrett’s esophagus, columnar dysplasia, and adenocarcinoma of the esophagus. In: Appelman KLaH, editor. Tumors of the Esophagus and Stomach. Washington: AFIP; 1995. p. 99–144.

    Google Scholar 

  24. Liu T, Zhang X, So CK, Wang S, Wang P, Yan L, et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis. 2007;28:488–96.

    Article  PubMed  CAS  Google Scholar 

  25. Wong NA, Wilding J, Bartlett S, Liu Y, Warren BF, Piris J, et al. CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci USA. 2005;102:7565–70.

    Article  PubMed  CAS  Google Scholar 

  26. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294:2155–8.

    Article  PubMed  CAS  Google Scholar 

  27. Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, et al. Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol. 2003;38:14–22.

    Article  PubMed  CAS  Google Scholar 

  28. Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology. 1997;113:478–86.

    Article  PubMed  CAS  Google Scholar 

  29. Chen X, Qin R, Liu B, Ma Y, Su Y, Yang CS, et al. Multilayered epithelium in a rat model and human Barrett’s esophagus: similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol. 2008;8:1.

    Article  PubMed  Google Scholar 

  30. Milano F, van Baal JW, Buttar NS, Rygiel AM, de Kort F, DeMars CJ, et al. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology. 2007;132:2412–21.

    Article  PubMed  CAS  Google Scholar 

  31. Slack JM, Tosh D. Transdifferentiation and metaplasia—switching cell types. Curr Opin Genet Dev. 2001;11:581–6.

    Article  PubMed  CAS  Google Scholar 

  32. Brabender J, Marjoram P, Salonga D, Metzger R, Schneider PM, Park JM, et al. A multigene expression panel for the molecular diagnosis of Barrett’s esophagus and Barrett’s adenocarcinoma of the esophagus. Oncogene. 2004;23:4780–8.

    Article  PubMed  CAS  Google Scholar 

  33. Glickman JN, Blount PL, Sanchez CA, Cowan DS, Wongsurawat VJ, Reid BJ, et al. Mucin core polypeptide expression in the progression of neoplasia in Barrett’s esophagus. Hum Pathol. 2006;37:1304–15.

    Article  PubMed  CAS  Google Scholar 

  34. Jovov B, Van Itallie CM, Shaheen NJ, Carson JL, Gambling TM, Anderson JM, et al. Claudin-18: a dominant tight junction protein in Barrett’s esophagus and likely contributor to its acid resistance. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1106–13.

    Article  PubMed  CAS  Google Scholar 

  35. Kumble S, Omary MB, Fajardo LF, Triadafilopoulos G. Multifocal heterogeneity in villin and Ep-CAM expression in Barrett’s esophagus. Int J Cancer. 1996;66:48–54.

    Article  PubMed  CAS  Google Scholar 

  36. Madsen J, Nielsen O, Tornoe I, Thim L, Holmskov U. Tissue localization of human trefoil factors 1, 2, and 3. J Histochem Cytochem. 2007;55:505–13.

    Article  PubMed  CAS  Google Scholar 

  37. Mitas M, Almeida JS, Mikhitarian K, Gillanders WE, Lewin DN, Spyropoulos DD, et al. Accurate discrimination of Barrett’s esophagus and esophageal adenocarcinoma using a quantitative three-tiered algorithm and multimarker real-time reverse transcription-PCR. Clin Cancer Res. 2005;11:2205–14.

    Article  PubMed  CAS  Google Scholar 

  38. van Baal JW, Bozikas A, Pronk R, Ten Kate FJ, Milano F, Rygiel AM, et al. Cytokeratin and CDX-2 expression in Barrett’s esophagus. Scand J Gastroenterol. 2008;43:132–40.

    Article  PubMed  Google Scholar 

  39. Wong NA, Warren BF, Piris J, Maynard N, Marshall R, Bodmer WF. EpCAM and gpA33 are markers of Barrett’s metaplasia. J Clin Pathol. 2006;59:260–3.

    Article  PubMed  CAS  Google Scholar 

  40. Christie KN, Thomson C. The distribution of carbonic anhydrase II in human, pig and rat oesophageal epithelium. Histochem J. 2000;32:753–7.

    Article  PubMed  CAS  Google Scholar 

  41. Xia SH, Hu LP, Hu H, Ying WT, Xu X, Cai Y, et al. Three isoforms of annexin I are preferentially expressed in normal esophageal epithelia but down-regulated in esophageal squamous cell carcinomas. Oncogene. 2002;21:6641–8.

    Article  PubMed  CAS  Google Scholar 

  42. Mobasheri A, Wray S, Marples D. Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol. 2005;36:1–14.

    Article  PubMed  CAS  Google Scholar 

  43. Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology. 2002;40:403–39.

    Article  PubMed  CAS  Google Scholar 

  44. Gerber JK, Richter T, Kremmer E, Adamski J, Hofler H, Balling R, et al. Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus. J Pathol. 2002;197:293–7.

    Article  PubMed  CAS  Google Scholar 

  45. Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT, et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell. 2005;120:843–56.

    Article  PubMed  CAS  Google Scholar 

  46. South AP. Plakophilin 1: an important stabilizer of desmosomes. Clin Exp Dermatol. 2004;29:161–7.

    Article  PubMed  CAS  Google Scholar 

  47. Nishimori T, Tomonaga T, Matsushita K, Oh-Ishi M, Kodera Y, Maeda T, et al. Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics. 2006;6:1011–8.

    Article  PubMed  CAS  Google Scholar 

  48. Mori-Akiyama Y, van den Born M, van Es JH, Hamilton SR, Adams HP, Zhang J, et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology. 2007;133:539–46.

    Article  PubMed  CAS  Google Scholar 

  49. Niimi T, Nagashima K, Ward JM, Minoo P, Zimonjic DB, Popescu NC. Claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol Cell Biol. 2001;21:7380–90.

    Article  PubMed  CAS  Google Scholar 

  50. Haveri H, Westerholm-Ormio M, Lindfors K, Maki M, Savilahti E, Andersson LC, et al. Transcription factors GATA-4 and GATA-6 in normal and neoplastic human gastrointestinal mucosa. BMC Gastroenterol. 2008;8:9.

    Article  PubMed  Google Scholar 

  51. Calon A, Gross I, Lhermitte B, Martin E, Beck F, Duclos B, et al. Different effects of the Cdx1 and Cdx2 homeobox genes in a murine model of intestinal inflammation. Gut. 2007;56:1688–95.

    Article  PubMed  CAS  Google Scholar 

  52. Barros R, Pereira B, Duluc I, Azevedo M, Mendes N, Camilo V, et al. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J Pathol. 2008.

Download references

Acknowledgments

We thank Dr. Li Cai, Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, in helping in SAGE(Poisson) analysis; Dr. Vasilis Vasiliou, Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO, for providing the anti-ALDH3A1 used in this study; Drs. Danielle M. Greenawalt and Wayne A. Phillips, Centre for Cancer Genomics and Predictive Medicine, Peter MacCallum Cancer Centre, Victoria, Australia, for providing original data and information regarding pathology; Dr. Jerzy Ostrowski, Department of Gastroenterology, Medical Center for Postgraduate Education, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland, for providing original data and information regarding pathology; Dr. William R. Otto, Histopathology Unit, London Research Institute, Cancer Research UK, London, UK, for staining our tissue sections for GDDR. This study was supported by NIH grants U56 CA092077 and P20 MD000175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxin Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Qin, R., Ma, Y. et al. Differential gene expression in normal esophagus and Barrett’s esophagus. J Gastroenterol 44, 897–911 (2009). https://doi.org/10.1007/s00535-009-0082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0082-2

Keywords

Navigation