Skip to main content
Log in

Basics and applications of stem cells in the pancreas

  • Topics
  • Stem cells in the Hepato-Biliary-Pancreas
  • Published:
Journal of Hepato-Biliary-Pancreatic Sciences

Abstract

Enormous efforts have been made to establish pancreatic stem/progenitor cells as a source for regenerative medicine for the treatment of diabetes mellitus. In recent years, it has been recognized that the self-renewal of beta cells is the dominant process involved in postnatal beta-cell regeneration and expansion. Nevertheless, several in-vitro studies have suggested that ductal or as yet unidentified cells are candidates for pancreatic stem/progenitor cells that can differentiate into multilineage cells, including insulin+ cells. The question remains as to whether beta cells are generated postnatally from stem/progenitor cells other than pre-existing beta cells. Furthermore, mutated pancreatic stem cells are considered to be prospective candidates for cancer stem cells or tumor-initiating cells. This review highlights recent progress in pancreatic stem/progenitor cell research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–22.

    Article  PubMed  CAS  Google Scholar 

  2. Ramalho-Santos M, Willenbring H. On the origin of the term “stem cell”. Cell Stem Cell. 2007;1(1):35–8. doi:10.1016/j.stem.2007.05.013.

    Article  PubMed  CAS  Google Scholar 

  3. Kushner JA, Weir GC, Bonner-Weir S. Ductal origin hypothesis of pancreatic regeneration under attack. Cell Metab. 2010;11(1):2–3. doi:10.1016/j.cmet.2009.12.005.

    Article  PubMed  CAS  Google Scholar 

  4. Murtaugh LC. Stem cells and beta cells: the same, but different? Cell Stem Cell. 2011;8(3):244–5. doi:10.1016/j.stem.2011.02.010.

    Article  PubMed  CAS  Google Scholar 

  5. Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science. 2008;322(5907):1490–4. doi:10.1126/science.1161431.

    Article  PubMed  CAS  Google Scholar 

  6. Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 1998;12(11):1705–13.

    Article  PubMed  CAS  Google Scholar 

  7. Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science. 2001;294(5542):564–7. doi:10.1126/science.1064344.

    Article  PubMed  CAS  Google Scholar 

  8. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: Ngn3 + cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129(10):2447–57.

    PubMed  CAS  Google Scholar 

  9. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122(3):983–95.

    PubMed  CAS  Google Scholar 

  10. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15(1):106–10. doi:10.1038/ng0197-106.

    Article  PubMed  CAS  Google Scholar 

  11. Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 1997;17(2):138–9. doi:10.1038/ng1097-138.

    Article  PubMed  CAS  Google Scholar 

  12. Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA. A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell. 2007;13(1):103–14. doi:10.1016/j.devcel.2007.06.001.

    Article  PubMed  CAS  Google Scholar 

  13. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32(1):128–34. doi:10.1038/ng959ng959.

    Article  PubMed  CAS  Google Scholar 

  14. Habener JF, Kemp DM, Thomas MK. Minireview: transcriptional regulation in pancreatic development. Endocrinology. 2005;146(3):1025–34. doi:10.1210/en.2004-1576.

    Article  PubMed  CAS  Google Scholar 

  15. Seymour PA, Freude KK, Tran MN, Mayes EE, Jensen J, Kist R, et al. SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci USA. 2007;104(6):1865–70. doi:060921710410.1073/pnas.0609217104.

    Article  PubMed  CAS  Google Scholar 

  16. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–30. doi:10.1056/NEJMoa061267.

    Article  PubMed  CAS  Google Scholar 

  17. Oliver-Krasinski JM, Stoffers DA. On the origin of the beta cell. Genes Dev. 2008;22(15):1998–2021. doi:10.1101/gad.1670808.

    Article  PubMed  CAS  Google Scholar 

  18. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. 2004;53(7):1721–32.

    Article  PubMed  CAS  Google Scholar 

  19. Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia. 2005;48(1):49–57. doi:10.1007/s00125-004-1606-1.

    Article  PubMed  CAS  Google Scholar 

  20. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med. 2000;6(3):278–82. doi:10.1038/73128.

    Article  PubMed  CAS  Google Scholar 

  21. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429(6987):41–6. doi:10.1038/nature02520.

    Article  PubMed  CAS  Google Scholar 

  22. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell. 2007;12(5):817–26. doi:10.1016/j.devcel.2007.04.011.

    Article  PubMed  CAS  Google Scholar 

  23. Solar M, Cardalda C, Houbracken I, Martin M, Maestro MA, De Medts N, et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell. 2009;17(6):849–60. doi:10.1016/j.devcel.2009.11.003.

    Article  PubMed  CAS  Google Scholar 

  24. Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA. 2000;97(14):7999–8004. doi:97/14/7999.

    Article  PubMed  CAS  Google Scholar 

  25. Bonner-Weir S, Weir GC. New sources of pancreatic beta-cells. Nat Biotechnol. 2005;23(7):857–61. doi:10.1038/nbt1115.

    Article  PubMed  CAS  Google Scholar 

  26. Reichert M, Rustgi AK. Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Invest. 2011;121(12):4572–8. doi:10.1172/JCI57131.

    Article  PubMed  CAS  Google Scholar 

  27. Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA. 2008;105(50):19915–9. doi:080580310510.1073/pnas.0805803105.

    Article  PubMed  CAS  Google Scholar 

  28. Xu X, D’Hoker J, Stange G, Bonne S, De Leu N, Xiao X, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 2008;132(2):197–207. doi:10.1016/j.cell.2007.12.015.

    Article  PubMed  CAS  Google Scholar 

  29. Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 2004;22(9):1115–24. doi:10.1038/nbt1004.

    Article  PubMed  CAS  Google Scholar 

  30. Smukler SR, Arntfield ME, Razavi R, Bikopoulos G, Karpowicz P, Seaberg R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell. 2011;8(3):281–93. doi:10.1016/j.stem.2011.01.015.

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki A, Nakauchi H, Taniguchi H. Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes. 2004;53(8):2143–52.

    Article  PubMed  CAS  Google Scholar 

  32. Oshima Y, Suzuki A, Kawashimo K, Ishikawa M, Ohkohchi N, Taniguchi H. Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology. 2007;132(2):720–32. doi:S0016-5085(06)02482-610.1053/j.gastro.2006.11.027.

    Article  PubMed  CAS  Google Scholar 

  33. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–41. doi:10.1038/nbt1163.

    Article  PubMed  Google Scholar 

  34. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52. doi:10.1038/nbt1393.

    Article  PubMed  CAS  Google Scholar 

  35. Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG, et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol. 2011;29(8):750–6. doi:10.1038/nbt.1931.

    Article  PubMed  CAS  Google Scholar 

  36. Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol. 2009;5(4):258–65. doi:10.1038/nchembio.154.

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. doi:10.1016/j.cell.2007.11.019.

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  PubMed  CAS  Google Scholar 

  39. Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol. 2005;23(12):1542–50. doi:10.1038/nbt1167.

    Article  PubMed  CAS  Google Scholar 

  40. Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, et al. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development. 2001;128(24):5109–17.

    PubMed  CAS  Google Scholar 

  41. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, et al. Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21(1):138–41. doi:10.1038/5096.

    Article  PubMed  CAS  Google Scholar 

  42. Collombat P, Hecksher-Sorensen J, Serup P, Mansouri A. Specifying pancreatic endocrine cell fates. Mech Dev. 2006;123(7):501–12. doi:10.1016/j.mod.2006.05.006.

    Article  PubMed  CAS  Google Scholar 

  43. Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell. 2009;138(3):449–62. doi:10.1016/j.cell.2009.05.035.

    Article  PubMed  CAS  Google Scholar 

  44. Schaffer AE, Freude KK, Nelson SB, Sander M. Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors. Dev Cell. 2010;18(6):1022–9. doi:10.1016/j.devcel.2010.05.015.

    Article  PubMed  CAS  Google Scholar 

  45. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  PubMed  CAS  Google Scholar 

  46. Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP, et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res. 2006;66(1):95–106. doi:66/1/9510.1158/0008-5472.CAN-05-2168.

    Article  PubMed  CAS  Google Scholar 

  47. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20(10):1218–49. doi:10.1101/gad.1415606.

    Article  PubMed  CAS  Google Scholar 

  48. Morris JPT, Wang SC, Hebrok M (2010) KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 10(10):683–95. doi:10.1038/nrc2899.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Taniguchi.

About this article

Cite this article

Sekine, K., Taniguchi, H. Basics and applications of stem cells in the pancreas. J Hepatobiliary Pancreat Sci 19, 594–599 (2012). https://doi.org/10.1007/s00534-012-0545-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00534-012-0545-3

Keywords

Navigation