Skip to main content
Log in

Timing and duration of partial melting and magmatism in the Variscan Montagne Noire gneiss dome (French Massif Central)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Unravelling the detailed pressure–temperature–time-deformation (P–T–t-D) evolution of magmatic and metamorphic rocks provides essential insights into the timing and duration of partial melting and related plutonism during crustal flow and migmatitic dome formation. The Montagne Noire Axial Zone (MNAZ) is a migmatitic dome located within the Variscan orogen in the southern French Massif Central. The timing of the main thermal event that was responsible for intense partial melting is still highly debated. In this study we present new laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) age data on micaschists, migmatites and granites that clarify the P–T–t-D evolution of the MNAZ. Structurally controlled samples were collected in order to constrain the timing of metamorphism, migmatization and plutonism regarding the main structural pattern D1, D2 and D3. D1 and D2 correspond to nappe stacking and dextral transpression, respectively. D3 is related to vertical shortening and coaxial thinning with a preferential NE–SW- to E–W-directed stretching. LA-ICP-MS analyses on the syntectonic Anglès, Soulié and Martys granites yielded U–Th/Pb monazite ages of 305 ± 1.5, 306 ± 1.9 and 314 ± 2 Ma, respectively. Five migmatitic rocks sampled in the eastern and central Espinouse area yielded in situ ages ranging between 312 ± 2 and 301 ± 2 Ma. Along the dome envelope, two garnet–staurolite-bearing micaschists near Saint-Pons-de-Thomières village gave in situ U–Th–Pb ages of 312.1 ± 2.1 and 309.0 ± 3.1 Ma. A fine-grained gneiss with a D3 fabrics in the eastern dome envelope yield a 208Pb/232Th mean age at 305.7 ± 3.9 Ma. All ages obtained in this study for the micaschists, migmatites and granites range between 315 and 301 Ma. We interpret this time span as the record of the high thermal event responsible for intense crustal partial melting within the lower and middle crust. The onset of partial melting occurred at ca. 315 Ma that marked the beginning of transpressional deformation D2. Based on structural and petrological studies, our new U–Th–Pb results suggest that (1) partial melting may have started at ca. 315 Ma and lasted 15–10 Myr and (2) D2 et D3 developed between 315 and 300 Ma and were synchronous. D1 deformation ended at 315 Ma. The onset and duration of D1 related to nappe stacking and crustal thickening is still uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aerden DGAM (1998) Tectonic evolution of the Montagne Noire and a possible orogenic model for syncollisional exhumation of deep rocks, Variscan belt, France. Tectonics 17:62–79

    Article  Google Scholar 

  • Aerden DGAM, Malavieille J (1999) Origin of a large-scale fold nappe in the Montagne Noire, Variscan belt, France. J Struct Geol 21:1321–1333

    Article  Google Scholar 

  • Alabouvette B, Demange M, Guérangé-Lozes J, Ambert P (2003) Notice et carte géologique de la France (1/250000) feuille de Montpellier. BRGM, Orléans, p 164

    Google Scholar 

  • Arthaud F (1970) Etude tectonique et microtectonique comparée de deux domaines hercyniens: les nappes de la Montagne Noire (France) et l’anticlinorium de l’Iglesiente (Sardaigne). Université des Sciences et Techniques du Languedoc, p 175

  • Ayers JC, Miller C, Gorisch B, Milleman J (1999) Textural development of monazite during high-grade metamorphism: hydrothermal growth kinetics, with implications for U–Th–Pb geochronology. Am Mineral 84:1766–1780

    Article  Google Scholar 

  • Ballèvre M, Fourcade S, Capdevila R, Peucat JJ, Cocherie A, Fanning CM (2012) Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan belt, France): implications for the breakup of Gondwana. Gondwana Res 21:1019–1036

    Article  Google Scholar 

  • Bard JP, Rambeloson R (1973) Métamorphisme plurifacial et sens de variation du degrès géothermique durant la tectogenèse polyphasée hercynienne dans la partie orientale de la zone axiale de la Montagne Noire (massif du Caroux, sud du Massif Central français). Bull Soc Geol Fr 15:579–586

    Article  Google Scholar 

  • Brun JP, Van Den Driessche J (1994) Extensional gneiss domes and detachment fault systems: structure and kinematics. Bull Soc Geol Fr 165(6):519–530

    Google Scholar 

  • Brun JP, Van Den Driessche J (1996) Réponse à observations et remarques sur l’article Extensional gneiss domes and detachment fault systems/structure and kinematics (Brun JP, Van Den Driessche J (1994) Bull Soc Géol Fr 165 (6): 519530). Bull Soc Geol Fr 167(2):295–302

    Google Scholar 

  • Charles N, Faure M, Chen Y (2009) The Montagne Noire migmatitic dome emplacement (French Massif Central): new insights from petrofabric and AMS studies. J Struct Geol 31(11):1423–1440

    Article  Google Scholar 

  • Cocherie A, Baudin T, Autran A, Guerrot C, Fanning M, Laumonier B (2005) U–Pb zircon (ID-TIMS and SHRIMP) evidence for the early Ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of the Pyrenees and the Montagne Noire (France). Bull Soc Geol Fr 176:269–282

    Article  Google Scholar 

  • Demange M (1985) The eclogite-facies rocks of the Montagne-Noire, France. Chem Geol 50:173–188. doi:10.1016/0009-2541(85)90119-6

    Article  Google Scholar 

  • Demange M (1993) What does the Monts-De-Lacaune Fault (Montagne-Noire, France) meanimplications for the origin of the Nappes. C R Acad Sci Ser II 317(3):411–418

    Google Scholar 

  • Demange M (1994) AnteVariscan evolution of the Montagne-Noire (France)from a passive margin to a foreland basin. C R Acad Sci Ser II 318(7):921–933

    Google Scholar 

  • Demange M (1996) Extensional gneiss domes and detachment fault systems: structure and kinematicsobservations and remarks. Bull Soc Geol Fr 167(2):295–298

    Google Scholar 

  • Demange M (1998) Contribution au problème de la formation des dômes de la Zone axiale de la Montagne Noire: analyse géométrique des plissements superposés dans les séries métasédimentaires de l’enveloppe. Implications pour tout modèle géodynamique. Géol Fr 4:3–56

    Google Scholar 

  • Demange M (1999) Evolution tectonique de la Montagne Noire: un modèle en transpression. C R Acad Sci Paris 329:823–829

    Google Scholar 

  • Depine GV, Andronicos CL, Phipps-Morgan J (2008) Near-isothermal conditions in the middle and lower crust induced by melt migration. Nat Geosci 452:80–83

    Google Scholar 

  • Didier A, Bosse V, Cherneva P, Gautier P, Georgieva M, Paquette JL, Gerdjiko I (2013) Syn-deformation fluid-assisted growth of monazite during renewed high-grade metamorphism in metapelites of the Central Rhodope (Bulgaria, Greece). Chem Geol 381:206–222

    Article  Google Scholar 

  • Doublier MP, Potel S, Wemmer K (2014) The tectono-metamorphic evolution of the very low-grade hanging wall constrains two stages gneiss dome formation in the Montagne Noire example (S-France). J Metamorph Geol 33:71–89. doi:10.1111/jmg.12111

    Article  Google Scholar 

  • Ducrot J, Lancelot JR, Reille JL (1979) Datation en Montagne Noire d’un témoin d’une phase majeure d’amincissement crustal caractéristique de l’Europe prévarisque. Age of a major phase of crustal thinning characteristic of PreVariscan Europe determined in the Montagne Noire region. Bull Soc Geol Fr 21(4):501–505

    Article  Google Scholar 

  • Echtler H, Malavieille J (1990) Extensional tectonics, basement uplift and Stephano–Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, southern Massif Central). Tectonophysics 177:125–138

    Article  Google Scholar 

  • Engel W, Feist R, Franke W (1978) Syn-orogenic gravitational transport in the Carboniferous of the Montagne Noire (South France). Z dt geol Ges 129:461–472

    Google Scholar 

  • Engel W, Feist R, Franke W (1980) Le Carbonifère anté-Stéphanien de la Montagne Noire: rapport entre mise en place des nappes et sédimentation. Bull Bur Rech Géol Min 1(4):341–389

    Google Scholar 

  • Faure M, Cottereau N (1988) Données cinématiques sur la mise en place du dôme migmatitique carbonifère moyen de la zone axiale de la Montagne Noire (Massif Central, France). C R Acad Sci Paris 307:1787–1794

    Google Scholar 

  • Faure M, Lardeaux JM, Ledru P (2009) A review of the pre-Permian geology of the Variscan French Massif Central. C R Geosci 341:202–213

    Article  Google Scholar 

  • Faure M, Cocherie A, Bé Mézène E, Charles N, Rossi P (2010) Middle Carboniferous crustal melting in the Variscan belt: new insights from U–Th–Pb tot monazite and U–Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Res 18:653–673

    Article  Google Scholar 

  • Faure M, Cocherie A, Gaché J, Esnault C, Guerrot C, Rossi P, Lin W, Li Q (2014) Middle Carboniferous intracontinental subduction in the outer zone of the Variscan belt (Montagne Noire Axial Zone, French Massif Central): multimethod geochronological approach of polyphase metamorphism. Geol Soc Lond Spec Publ. doi:10.1144/SP405.2

    Google Scholar 

  • Feist R, Galtier J (1985) Découverte de flores d’âge namurien probable dans le flysch à olistolites de Cabrières (Hérault). Implication sur la durée de la sédimentation synorogénique dans la Montagne Noire. Comptes Rendus de l’Académie des sciences, Paris, Série IIa 300:207–212

    Google Scholar 

  • Franke W, Doublier MP, Klama K, Potel S, Wemmer K (2011) Hot metamorphic core complex in a cold foreland. Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-010-0512-7

    Google Scholar 

  • Fréville K, Cenki-Tok B, Trap P, Rabin M, Leyreloup A, Régnier JL, Whitney D (2016) Thermal interaction of middle and upper crust during gneiss dome formation: example from the Montagne Noire (French Massif Central). J Metamorph Geol 34:447–462. doi:10.1111/jmg.12188

    Article  Google Scholar 

  • Gebauer D, Grünenfelder M (1982) Geological development of the Hercynian belt of Europe based on age and origin of high grade and high pressure mafic and ultramafic rocks. In: First international conference on geochronology, cosmochronology, isotope geology, Nikko, pp 111–112

  • Gèze B (1949) Etude géologique de la Montagne Noire et des Cévennes méridionales. Soc Géol Fr Mém 62:1–125

    Google Scholar 

  • Guy A, Edel JB, Schulmann K, Tomek C, Lexa O (2011) A geophysical model of the Variscan orogenic root (Bohemian Massif): implications for modern collisional orogens. Lithos 124:144–157

    Article  Google Scholar 

  • Hamet J, Allegre C (1976) Hercynian orogeny in Montagne Noire (France)application of Rb-87-Sr-87 systematics. Geol Soc Am Bull 87(10):1429–1442

    Article  Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implication for interpretation of complex crustal histories. Chem Geol 110:1–13

    Article  Google Scholar 

  • Hasalová P, Schulmann K, Leka O, Stípská P, Hrouda F, Ulrich S, Haloda J, Týcová P (2008) Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysis. J Metamorph Geol 26:29–53

    Article  Google Scholar 

  • Hoskin PWO (2000) Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. Geochim Cosmochim Acta 64:1905–1923

    Article  Google Scholar 

  • Hurai V, Paquette JL, Huraiovà M, Konecny P (2010) U–Th–Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-carpathian back-arc basin. J Volcanol Geotherm Res 198:275–287

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906

    Article  Google Scholar 

  • Lardeaux JM (2014) Deciphering orogeny: a metamorphic perspective. Examples from the European Alpine and Variscan belts. Part II. Variscan metamorphism in the French Massif Central—a review. Bull Soc Géol Fr 185:281–310

    Article  Google Scholar 

  • Ledru P, Lardeaux JM, Santallier D, Autran A, Quenardel JM, Floch JP, Lerouge G, Maillet N, Marchand J, Ploquin A (1989) Où sont les nappes dans le Massif central français? (Where are the nappes in the French Massif central?). Bull Soc Géol Fr 3:605–618

    Google Scholar 

  • Ludwig KR (2001) User manual for Isoplot/Ex rev. 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a, pp 1–56

  • Malavieille J (2010) Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges: analog models and case studies. Geol Soc Am 20:4–10. doi:10.1130/GSATG48A.1

    Google Scholar 

  • Maluski H, Costa S, Echtler H (1991) Late Variscan tectonic evolution by thinning of earlier thickened crust: a 40Ar39Ar study of the Montagne Noire, southern Massif Central, France. Lithos 26(3–4):287–304

    Article  Google Scholar 

  • Matte P, Lancelot J, Mattauer M (1998) La Zone axiale hercynienne de la Montagne Noire n’est pas un “metamorphic core complex” extensif mais un anticlinal post-nappe à coeur anatectique. Geodin Acta 11(1):13–22

    Google Scholar 

  • Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 10:127–146

    Article  Google Scholar 

  • Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer La-ICPMS system coupled to a two-volume laser-ablation cell. J Anal At Spectrom 24:209–214

    Article  Google Scholar 

  • Nicolas A, Bouchez JL, Blaise JL, Poirier JP (1977) Geological aspects of deformation in continental shear zones. Tectonophysics 42:55–73

    Article  Google Scholar 

  • Ourzik A, Debat P, Mercier A (1991) Metamorphic evolution of the N and Ne parts of the Montagne Noire Axial Zone (southern Massif-Central, France). C R Acad Sci Ser II 313(13):1547–1553

    Google Scholar 

  • Pitra P, Poujol M, Van Den Driessche J, Poilvet JC, Paquette JL (2012) Early Permian extensional shearing of an Ordovician granite: the Saint-Eutrope “C/S-like” orthogneiss (Montagne Noire, French Massif Central). C R Geosci 34:377–384. doi:10.1016/j.crte.2012.06.002

    Article  Google Scholar 

  • Poilvet JC, Poujol M, Pitra P, Van Den Driesssche J, Paquette JL (2011) The Montalet granite, Montagne Noire, France: an Early Permian syn-extensional pluton as evidenced by new U–Th–Pb data on zircon and monazite. C R Geosci 343:454–461. doi:10.1016/j.crte.2011.06.002

    Article  Google Scholar 

  • Rabin M, Trap P, Carry N, Fréville K, Cenki-Tok B, Lobjoie C, Goncalves P, Marquer D (2015) Strain partitioning along the anatectic front in the Variscan Montagne Noire massif (Southern French Massif Central). Tectonics 34:1709–1735. doi:10.1002/2014TC003790

    Article  Google Scholar 

  • Rey PF, Teyssier C, Kruckenberg SC, Whitney DL (2011) Viscous collision in channel explains double domes in metamorphic core complexes. Geology 39(4):387–390

    Article  Google Scholar 

  • Rey PF, Teyssier C, Kruckenberg SC, Whitney DL (2012) Viscous collision in channel explains double domes inmetamorphic core complexes. Geology 40:e280 (Forum Reply)

    Article  Google Scholar 

  • Roger F, Respaut JP, Brunel M, Matte P, Paquette JL (2004) Première datation U–Pb des orthogneiss oeillés de la zone axiale de la Montagne Noire (Sud du Massif Central): nouveaux témoins du magmatisme ordovicien dans la chaîne varisque. C R Geosci Acad Sci Paris 336:19–28

    Article  Google Scholar 

  • Roger F, Maluski H, Lepvrier C, Van Vu T, Paquette JL (2012) LA-ICPMS zircons U/Pb dating of Permo–Triassic and Cretaceous magmatisms in Northern Vietnam—geodynamical implications. J Asian Earth Sci 48:72–82. doi:10.1016/j.jseaes.2011.12.012

    Article  Google Scholar 

  • Roger F, Teyssier Ch, Respaut JP, Rey P, Jolivet M, Whitney DL, Paquette JP, Brunel M (2015) Timing of deformation and exhumation of the Montagne Noire double dome, French Massif Central. Tectonophysics 640–641:53–69

    Article  Google Scholar 

  • Schuiling RD (1960) Le dome gneissique de l’Agoût (Tarn et Hérault). Mém Soc Géol Fr 91:59

    Google Scholar 

  • Schulmann K, Edel JB, Hasalová P, Cosgrove J, Ježek J, Lexa O (2009) Influence of melt induced mechanical anisotropy on the magnetic fabrics and rheology of deforming migmatites, Central Vosges, France. J Struct Geol 31:1223–1237. doi:10.1016/j.jsg.2009.07.004

    Article  Google Scholar 

  • Soula JC, Debat P, Brusset S, Bessiere G, Christophoul F, Deramond J (2001) Thrust-related, diapiric, and extensional doming in a frontal orogenic wedge: example of the Montagne Noire, Southern French Hercynian belt. J Struct Geol 23(11):1677–1699. doi:10.1016/S0191-8141(01)00021-9

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Thompson PH, Bard JP (1982) Isograds and mineral assemblages in the Eastern Axial Zone, Montagne Noire (France): implications for temperature gradients and P/T history. Can J Earth Sci 19(1):129–143

    Article  Google Scholar 

  • Van Den Driessche J, Brun JP (1989) Kinematic model of late Paleozoic extensional tectonics in the southern French massif central. C R Acad Sci II 309(16):1607–1613

    Google Scholar 

  • Van Den Driessche J, Brun JP (1992) Tectonic evolution of the Montagne Noire (French Massif Central): a model of extensional gneiss dome. Geodin Acta 5:85–99

    Article  Google Scholar 

  • Van Den Driessche J, Pitra P (2012) Viscous collision in channel explains double domes in metamorphic core complexes. Geology 40(10):E279. doi:10.1130/G32727C.1

    Article  Google Scholar 

  • Vanderhaeghe O, Teyssier C (2001) Partial melting and flow of orogens. Tectonophysics 342:451–472

    Article  Google Scholar 

  • Vanderhaeghe O, Burg JP, Teyssier C (1999) Exhumation of migmatites in two collapsed orogens. In: Ring U, Brandon MT, Lister GS, Willet SD (eds) Exhumation processes: normal faulting, ductile flow and erosion, vol 154. Geological Society London Special Publications, London, pp 181–204

    Google Scholar 

  • Whitney DL, Roger F, Teyssier Ch, Rey PF, Respaut JP (2015) Syn-collapse eclogite metamorphism and exhumation of deep crust in a migmatite dome/the P–T–t record of the youngest Variscan eclogite (Montagne Noire, French Massif Central). Earth Planet Sci Lett 430:224–234

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci Lett 35:137–175

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by an INSU/SYSTER project from French CNRS. This research was also partly supported by the French RENATECH network, who provided access to the electron microscope of the MIMENTO platform of the University of Bourgogne-Franche-Comté. Authors are very grateful for the constructive comments made by Pavel Pitra, Patrice Rey and Romain Tartèse that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Trap.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The detailed analytical procedures for the LA-ICP-MS U–Th–Pb method (DOC 49 kb)

Table S2

LA-ICP-MS U–Th–Pb geochronological data analysed in situ in thin section for the metamorphic rocks. % conc = percentage of concordance ((206Pb/238U age/208Pb/232Th age) × 100). Mz = monazite, Xe = xenotime, Bt = biotite, Ms = muscovite, Crd = cordierite and Sill = sillimanite, Mtx = Quartz–feldspar matrix, Incl. = inclusion in…, Ag = Bt-Sill aggregate and Fol = Muscovite-bearing foliation (DOCX 76 kb)

Table S3

LA-ICP-MS U–Th–Pb geochronological data for separated grains in the magmatic rocks. % conc = percentage of concordance ((206Pb/238U age/208Pb/232Th age) × 100). Mz = monazite and Xe = xenotime, R = rim and c = core (DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trap, P., Roger, F., Cenki-Tok, B. et al. Timing and duration of partial melting and magmatism in the Variscan Montagne Noire gneiss dome (French Massif Central). Int J Earth Sci (Geol Rundsch) 106, 453–476 (2017). https://doi.org/10.1007/s00531-016-1417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1417-x

Keywords

Navigation