Skip to main content
Log in

Discovery of the early Jurassic Gajia mélange in the Bangong–Nujiang suture zone: Southward subduction of the Bangong–Nujiang Ocean?

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Mélange records a series of geological processes associated with oceanic subduction and continental collision. This paper reports for the first time the presence of Early Jurassic mélange from NW Nagqu in the southern margin of the Bangong–Nujiang suture zone, termed as the Gajia mélange. It shows typically blocks-in-matrix structure with matrix of black shale and siliceous mudstone, and several centimeters to several meters sized blocks of sandstone, silicalite, limestone and basalt. The sandstone blocks consist of homologous sandstone and two types of exotic sandstone, with different modal compositions. The Group 1 of exotic sandstone blocks consists of mainly of feldspar and quartz, whereas the Group 2 is rich in volcanic detritus. The Group 3 of homologous sandstone blocks is rich in feldspar and volcanic detritus with rare occurrence of quartz. U–Pb age data and in situ Hf isotopic compositions of detrital zircons from sandstone blocks are similar to those from the Lhasa terrane, suggesting that the sandstone blocks in the Gajia mélange most probably came from the Lhasa terrane. The YC1σ(2+) age of homologous sandstone blocks is 177 ± 2.4 Ma, suggesting an Early Jurassic depositional age for the sandstones within the Gajia mélange. The Gajia mélange likely records the southward subduction of the Bangong–Nujiang Ocean during the Early Jurassic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allègre CJ, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger JJ, Achache J, Scharer U, Marcoux J, Burg JP, Girardeau J, Armijo R, Gariepy C, Gopel C, Li T, Xiao X, Chang C, Li G, Wang N, Chen G, Han T, Wang X, Den W, Sheng H, Cao Y, Zhou J, Qiu H, Bao P, Wang S, Wang B, Zhou Y, Xu R (1984) Structure and evolution of the Himalaya–Tibet orogenic belt. Nature 307:17–22. doi:10.1038/307017a0

    Article  Google Scholar 

  • An W, Hu X, Garzanti E, BouDagher-Fadel MK, Wang J, Sun G (2014) Xigaze forearc basin revisited (South Tibet): provenance changes and origin of the Xigaze Ophiolite. Geol Soc Am Bull 126:1595–1613. doi:10.1130/b31020.1

    Article  Google Scholar 

  • An W, Hu X, Garzanti E (2016) Sandstone provenance and tectonic evolution of the Xiukang Mélange from Neotethyan subduction to India–Asia collision (Yarlung–Zangbo suture, south Tibet). Gondwana Res. doi:10.1016/j.gr.2015.08.010

  • Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Article  Google Scholar 

  • Baxter AT, Aitchison JC, Zyabrev SV (2009) Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for development of the Bangong–Nujiang suture, Tibet. J Geol Soc 166:689–694. doi:10.1144/0016-76492008-128

    Article  Google Scholar 

  • Belousova E, Griffin WL, O’reilly SY, Fisher N (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Petrol 143:602–622

    Article  Google Scholar 

  • BouDagher-Fadel MK (2008) Evolution and geological significance of larger benthic foraminifera. In: Developments in palaeontology and stratigraphy, vol 21. Elsevier

  • Chang CP, Angelier J, Huang CY, Liu CS (2001) Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc–continent collision. Geol Mag 138:633–651. doi:10.1017/S0016756801005970

    Article  Google Scholar 

  • Chen Y, Zhang K, Li G, Nimaciren ZS, Chen G (2005) Discovery of an uniformity between the Upper Triassic Quehala Group and its underlying rock series in the central segment of the Bangong Co-Nujiang junction zone, Tibet, China (in Chinese with English abstract). Geol Bull China 24:621–624

    Google Scholar 

  • Chen W, Yang T, Zhang S, Yang Z, Li H, Wu H, Zhang J, Ma Y, Cai F (2012) Paleomagnetic results from the Early Cretaceous Zenong Group volcanic rocks, Cuoqin, Tibet, and their paleogeographic implications. Gondwana Res 22:461–469. doi:10.1016/j.gr.2011.07.019

    Article  Google Scholar 

  • Chu MF, Chung SL, Song B, Liu D, O’Reilly SY, Pearson NJ, Ji J, Wen D-J (2006) Zircon U–Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34:745–748

    Article  Google Scholar 

  • Deng J, Wang Q, Li G, Li C, Wang C (2014) Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res 26:419–437. doi:10.1016/j.gr.2013.08.002

    Article  Google Scholar 

  • Dewey JF, Shackleton RM, Chengfa C, Yiyin S (1988) The tectonic evolution of the Tibetan Plateau. Philos Trans R Soc Lond Ser A Math Phys Sci 327:379–413

    Article  Google Scholar 

  • Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125

    Article  Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone compositions. AAPG Bull 63:2164–2182

    Google Scholar 

  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94:222–235

    Article  Google Scholar 

  • Diekmann B, Hofmann J, Henrich R, Fütterer DK, Röhl U, Wei KY (2008) Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Mar Geol 255:83–95. doi:10.1016/j.margeo.2008.08.001

    Article  Google Scholar 

  • Ding L, Kapp P, Wan X (2005) Paleocene–Eocene record of ophiolite obduction and initial India–Asia collision, south central Tibet. Tectonics 24:1–18

    Article  Google Scholar 

  • Dong C, Li C, Wan Y, Wang W, Wu Y, Xie H, Liu D (2011) Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: constraint on tectonic affinity and source regions. Sci China Earth Sci 54:1034–1042. doi:10.1007/s11430-010-4166-x

    Article  Google Scholar 

  • Dong X, Zhang Z, Liu F, He Z, Lin Y (2014) Late Paleozoic intrusive rocks from the southeastern Lhasa terrane, Tibetan Plateau, and their Late Mesozoic metamorphism and tectonic implications. Lithos 198–199:249–262. doi:10.1016/j.lithos.2014.04.001

    Article  Google Scholar 

  • Dou Y, Yang S, Liu Z, Shi X, Li J, Yu H, Berne S (2012) Sr–Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the late Quaternary. Palaeogeogr Palaeoclimatol Palaeoecol 365–366:38–47. doi:10.1016/j.palaeo.2012.09.003

    Article  Google Scholar 

  • Fan J, Li C, Xie C, Wang M (2014) Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys. Int Geol Rev 56:1504–1520. doi:10.1080/00206814.2014.947639

    Article  Google Scholar 

  • Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N (2011) Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics. doi:10.1029/2011TC002868

    Google Scholar 

  • Griffin W, Wang X, Jackson S, Pearson N, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Griffin WL, Belousova EA, Shee SR, Pearson NJ, O’Reilly SY (2004) Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambr Res 131:231–282. doi:10.1016/j.precamres.2003.12.011

    Article  Google Scholar 

  • Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels G, Ding L (2006) Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 34:505–508. doi:10.1130/G22453.1

    Article  Google Scholar 

  • Guynn J, Kapp P, Gehrels GE, Ding L (2012) U–Pb geochronology of basement rocks in central Tibet and paleogeographic implications. J Asian Earth Sci 43:23–50. doi:10.1016/j.jseaes.2011.09.003

    Article  Google Scholar 

  • Hao LL, Wang Q, Wyman DA, Ou Q, Dan W, Jiang ZQ, Wu FY, Long JH, Li J (2016) Underplating of basaltic magmas and crustal growth in a continental arc: evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos 245:223–242. doi:10.1016/j.lithos.2015.09.015

    Article  Google Scholar 

  • Harris R, Sawyer R, Audley-Charles M (1998) Collisional melange development: geologic associations of active melange-forming processes with exhumed melange facies in the western Banda orogen, Indonesia. Tectonics 17:458–479. doi:10.1029/97TC03083

    Article  Google Scholar 

  • Hsü KJ (1974) Mélanges and their distinction from olistostromes. Soc Econ Paleontol Mineral Spec Publ 19:321–333

    Google Scholar 

  • Hsü KJ, Guitang P, Sengör A (1995) Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the archipelago model of orogenesis. Int Geol Rev 37:473–508

    Article  Google Scholar 

  • Hu X, Garzanti E, Moore T, Raffi I (2015) Direct stratigraphic dating of India–Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 43:859–862. doi:10.1130/g36872.1

    Article  Google Scholar 

  • Ingersoll RV, Bullard TF, Ford RL, Grimm JP, Pickle JD, Sares SW (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. J Sediment Res 54:103–116. doi:10.1306/212f83b9-2b24-11d7-8648000102c1865d

    Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  • Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ (2009) Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol 262:229–245. doi:10.1016/j.chemgeo.2009.01.020

    Article  Google Scholar 

  • Kang ZQ, Xu JF, Wang BD, Chen JL (2010) Qushenla Formation volcanic rocks in north Lhasa block: products of Bangong Co-Nujiang Tethy’s southward subduction (in Chinese with English abstract). Acta Petrol Sin 26:3106–3116

    Google Scholar 

  • Kapp P, Yin A, Harrison TM, Ding L (2005) Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol Soc Am Bull 117:865–878. doi:10.1130/b25595.1

    Article  Google Scholar 

  • Kapp P, DeCelles P, Leier A, Fabijanic J, He S, Pullen A, Gehrels G, Ding L (2007a) The Gangdese retroarc thrust belt revealed. GSA Today 17:4

    Article  Google Scholar 

  • Kapp P, DeCelles PG, Gehrels GE, Heizler M, Ding L (2007b) Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol Soc Am Bull 119:917–933

    Article  Google Scholar 

  • Kidd WSF et al (1988) Geological mapping of the 1985 Chinese-British Tibetan (Xizang–Qinghai) Plateau Geotraverse route. Phil Trans R Soc Lond A 327(1594). doi:10.1098/rsta.1988.0130

  • Leier AL, DeCelles PG, Kapp P, Gehrels GE (2007a) Lower Cretaceous strata in the Lhasa terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. J Sediment Res 77:809–825

    Article  Google Scholar 

  • Leier AL, Kapp P, Gehrels GE, DeCelles PG (2007b) Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet. Basin Res 19:361–378. doi:10.1111/j.1365-2117.2007.00330.x

    Article  Google Scholar 

  • Li G, Sandiford M, Liu X, Xu Z, Wei L, Li H (2014a) Provenance of Late Triassic sediments in central Lhasa terrane, Tibet and its implication. Gondwana Res 25:1680–1689. doi:10.1016/j.gr.2013.06.019

    Article  Google Scholar 

  • Li JX, Qin KZ, Li GM, Richards JP, Zhao JX, Cao MJ (2014b) Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate–felsic intrusions in central Tibet: petrogenetic and tectonic implications. Lithos 198–199:77–91. doi:10.1016/j.lithos.2014.03.025

    Article  Google Scholar 

  • Li GM, Li JX, Zhao JX, Qin KZ, Cao MJ, Evans NJ (2015) Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: evidence from U–Pb ages, petrochemistry and Sr–Nd–Hf isotopes. J Asian Earth Sci 105:443–455. doi:10.1016/j.jseaes.2015.02.017

    Article  Google Scholar 

  • Liu D, Huang Q, Fan S, Zhang L, Shi R, Ding L (2014) Subduction of the Bangong–Nujiang Ocean: constraints from granites in the Bangong Co area, Tibet. Geol J 49:188–206. doi:10.1002/gj.2510

    Article  Google Scholar 

  • Liu D, Shi R, Ding L, Huang Q, Zhang X, Yue Y, Zhang L (2015) Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong–Nujiang Tethyan Ocean. Gondwana Res. doi:10.1016/j.gr.2015.04.007 (in press)

    Google Scholar 

  • Ludwig K (2001) Users manual for Isoplot/Ex rev. 3.23. Berkeley Geochronology Centre Special Publication 1

  • Nimaciren, Xie YW (2005) Discovery of Middle Triassic strata in the Nagqu area, northern Tibet, China, and its geological implications (in Chinese with English abstract). Geol Bull China 24:1141–1149

    Google Scholar 

  • Nimaciren, Xie YW, Sha ZL, Peng DP, Qiangbazaxi (2004) 1: 250, 000 geological report of Nagqu County with geological map (in Chinese). Xizang Institute of Geological Survey, China University of Geosciences Press, Lhasa, Wuhan

    Google Scholar 

  • Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR, Liao ZL (2006) Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution (in Chinese with English abstract). Acta Petrol Sin 22:521–533

    Google Scholar 

  • Pan G et al (2012) Tectonic evolution of the Qinghai-Tibet Plateau. J Asian Earth Sci 53:3–14. doi:10.1016/j.jseaes.2011.12.018

    Article  Google Scholar 

  • Pullen A, Kapp P, Gehrels G, DeCelles P, Brown E, Fabijanic M, Ding L (2008) Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet. J Asian Earth Sci 33:323–336

    Article  Google Scholar 

  • Rao X, Skelton PW, Sha J, Cai H, Iba Y (2015) Mid-Cretaceous rudists (Bivalvia: Hippuritida) from the Langshan Formation, Lhasa block, Tibet. Pap Palaeontol 1:401–424. doi:10.1002/spp2.1019

    Article  Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium-hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Sun G, Hu X, Wang J (2011) Petrologic and provenance analysis of the Zongzhuo Mélange in Baisha area, Gyangze, southern Tibet (in Chinese with English abstract). Acta Geol Sin 85:1343–1351

    Article  Google Scholar 

  • Van Achterbergh E, Ryan C, Griffin W (2001) GLITTER on-line interactive data reduction for the LA-ICPMS microprobe. Macquarie Research Ltd, Sydney

    Google Scholar 

  • Wang F, Tang Y (1984) Primary analysis of tectonic environment of the ophiolite in northern Tibet (in Chinese). Himal Geol 2:99–113

    Google Scholar 

  • Wang X, Yang S, Shi J, Guo L, Shi Y, Lu H, Dong H, Xu J, Kong H, Hu X (1988) Discovery of collision mélange in Longquan, Zhejiang Province and its significance for studying collision orogenic belt in southeastern China (in Chinese with English abstract). J Nanjing Univ (Nat Sci) 24:367–378

    Google Scholar 

  • Wang B, Wang L, Chen J, Liu H, Yin F, Li X (2015) Petrogenesis of Late Devonian-Early Carboniferous volcanic rocks in northern Tibet: new constraints on the Paleozoic tectonic evolution of the Tethyan Ocean. Gondwana Res. doi:10.1016/j.gr.2015.09.007 (in press)

    Google Scholar 

  • Wang BD, Wang LQ, Chung SL, Chen JL, Yin FG, Liu H, Li XB, Chen LK (2016) Evolution of the Bangong–Nujiang Tethyan ocean: insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos 245:18–33

    Article  Google Scholar 

  • Wu FY, Ji WQ, Liu CZ, Chung SL (2010) Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: constraints on Transhimalayan magmatic evolution in southern Tibet. Chem Geol 271:13–25. doi:10.1016/j.chemgeo.2009.12.007

    Article  Google Scholar 

  • Xu RH, Schärer U, Allègre CJ (1985) Magmatism and Metamorphism in the Lhasa Block (Tibet): a geochronological study. J Geol 93:41–57. doi:10.2307/30075202

    Article  Google Scholar 

  • XZBGM (1993) Regional geology of Tibet Autonomous Region (in Chinese). Geological Publishing House, Beijing

    Google Scholar 

  • Yan M, Zhang D, Fang X, Ren H, Zhang W, Zan J, Song C, Zhang T (2016) Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: implications for the evolution of the Paleo- and Meso-Tethys. Gondwana Res. doi:10.1016/j.gr.2016.01.012 (in press)

    Google Scholar 

  • Yang TN, Zhang HR, Liu YX, Wang ZL, Song YC, Yang ZS, Tian SH, Xie HQ, Hou KJ (2011) Permo-Triassic arc magmatism in central Tibet: evidence from zircon U–Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry. Chem Geol 284:270–282. doi:10.1016/j.chemgeo.2011.03.006

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Yin J, Xu J, Liu C, Li H (1988) The Tibetan Plateau: regional stratigraphic context and previous work. Philos Trans R Soc Lond Ser A 327:5–52

    Article  Google Scholar 

  • Zhai Q, Jahn B, Wang J, Su L, Mo XX, Wang K, Tang S, Lee H (2013) The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U–Pb dating, geochemical and Sr–Nd–Hf isotopic characteristics. Lithos 168–169:186–199. doi:10.1016/j.lithos.2013.02.005

    Article  Google Scholar 

  • Zhang KJ, Xia BD, Wang GM, Li YT, Ye HF (2004) Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geol Soc Am Bull 116:1202–1222. doi:10.1130/b25388.1

    Article  Google Scholar 

  • Zhang Q, Ding L, Cai F, Xu X, Zhang L, Xu Q, Willems H (2012) Early Cretaceous Gangdese retroarc foreland basin evolution in the Selin Co basin, central Tibet: evidence from sedimentology and detrital zircon geochronology. Geol Soc Lond Spec Publ 353:27–44. doi:10.1144/SP353.3

    Article  Google Scholar 

  • Zhu DC, Mo XX, Niu Y, Zhao ZD, Wang LQ, Liu YS, Wu FY (2009a) Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology 268:298–312

    Article  Google Scholar 

  • Zhu DC, Mo XX, Niu Y, Zhao ZD, Wang LQ, Pan GT, Wu FY (2009b) Zircon U–Pb dating and in situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: implications for Permian collisional orogeny and paleogeography. Tectonophysics 469:48–60

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu Y, Dilek Y, Mo XX (2011a) Lhasa terrane in southern Tibet came from Australia. Geology 39:727–730. doi:10.1130/g31895.1

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu Y, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY (2011b) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255. doi:10.1016/j.epsl.2010.11.005

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu Y, Dilek Y, Hou ZQ, Mo XX (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res 23:1429–1454

    Article  Google Scholar 

  • Zhu DC, Li S-M, Cawood PA, Wang Q, Zhao ZD, Liu SA, Wang LQ (2016) Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 245:7–17. doi:10.1016/j.lithos.2015.06.023

    Article  Google Scholar 

Download references

Acknowledgments

This work benefited from discussions with Jiangang Wang and Zhong Han. We thank Bin Wu, Xiong Yan for their assistance in the laboratory and Dehua Zhang for their help in the field. This study was financially supported by the CAS Strategic Priority Research Program (B) (XDB03010000) and the Chinese NSFC Project (41472081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumian Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 1851 kb)

Supplementary material 2 (XLS 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, W., Hu, X., Zhu, D. et al. Discovery of the early Jurassic Gajia mélange in the Bangong–Nujiang suture zone: Southward subduction of the Bangong–Nujiang Ocean?. Int J Earth Sci (Geol Rundsch) 106, 1277–1288 (2017). https://doi.org/10.1007/s00531-016-1405-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1405-1

Keywords

Navigation