Skip to main content
Log in

First field identification of the Cuonadong dome in southern Tibet: implications for EW extension of the North Himalayan gneiss dome

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Cuonadong dome exposes in east-southern margin of the North Himalayan gneiss domes (NHGD), which is reported first time in this study. The Cuonadong dome is located at the southern part of the Zhaxikang ore concentration area, which is divided into three tectono-lithostratigraphic units by two curved faults around the dome geometry from upper to lower (or from outer to inner): the upper unit, middle unit and lower unit, and the outer fault is Nading fault, while the inner fault is Jisong fault. The Cuonadong dome is a magmatic orthogneiss and leucogranite mantled by orthogneiss and metasedimentary rocks, which in turn are overlain by Jurassic metasedimentary and sedimentary rocks. The grades of metamorphism and structural deformation increase towards the core, which is correspondence with the Ridang Formation low-metamorphic schist, tourmaline granitic–biotite gneiss, garnet–mica gneiss and mylonitic quartz–mica gneiss. The Cuonadong dome preserves evidences for four major deformational events: firstly top-to-S thrust (D1), early approximately N–S extensional deformation (D2), main approximately E–W extensional deformation (D3), and late collapse structural deformation (D4) around the core of the Cuonadong dome, which are consistent to three groups lineation: approximately N–S-trending lineation including L1 and L2, E–W trending L3, and L4 with plunging towards outside of the dome, respectively. The formation of the Cuonadong dome was probably resulted from the main E–W extensional deformation which is a result of eastward flow of middle or lower crust from beneath Tibet accommodated by northward oblique underthrusting of Indian crust beneath Tibet. The establishment of the Cuonadong dome enhanced the E–W extension of the NHGD, which is further divided into two structural dome zones according to the different extensional directions: approximately N–S extensional North Himalayan gneiss domes (NS-NHGD) and E–W extensional North Himalayan gneiss domes (EW-NHGD). The NS-NHGD developed by a dominantly N–S contraction and locally extensional regime and keep a close relationship to the South Tibetan Detachment System, whereas the EW-NHGD formed by an E–W extensional deformation along the north–south-trending rifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aitchison JC, Ali JR, Davis AM (2007) When and where did India and Asia collide? J Geophys Res 112:1–19

    Article  Google Scholar 

  • Aoya M, Wallis SR, Terada K, Lee J, Kawakami T, Wang Y, Heizler M (2005) North-south extension in the Tibetan crust triggered by granite emplacement. Geology 33:853–856

    Article  Google Scholar 

  • Armijo R, Tapponnier P, Mercier JL, Han T-L (1986) Quaternary extension in southern Tibet: field observations and tectonic implications. J Geophys Res Solid Earth 91:13803–13872

    Article  Google Scholar 

  • Blisniuk PM et al (2001) Normal faulting in central Tibet since at least 13.5[thinsp]Myr ago. Nature 412:628–632

    Article  Google Scholar 

  • Brookfield ME (1993) The Himalayan passive margin from Precambrian to Cretaceous times. Sed Geol 84:1–35

    Article  Google Scholar 

  • Burg JP, Chen GM (1984) Tectonics and structural zonation of southern Tibet, China. Nature 311:219–223

    Article  Google Scholar 

  • Burg JP, Guiraud M, Chen GM, Li GC (1984) Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth Planet Sci Lett 69:391–400

    Article  Google Scholar 

  • Chen Z, Liu Y, Hodges K, Burchfiel B, Royden L, Deng C (1990) The Kangmar Dome: a metamorphic core complex in southern Xizang (Tibet). Science 250:1552–1556

    Article  Google Scholar 

  • Cook KL, Royden LH (2008) The role of crustal strength variations in shaping orogenic plateaus, with application to Tibet. J Geophys Res Solid Earth 1978–2012:113

    Google Scholar 

  • Copley A (2008) Kinematics and dynamics of the southeastern margin of the Tibetan Plateau. Geophys J Int 174:1081–1100

    Article  Google Scholar 

  • Copley A, McKenzie D (2007) Models of crustal flow in the India-Asia collision zone. Geophys J Int 169:683–698

    Article  Google Scholar 

  • Debon F, Le Fort P, Sheppard SM, Sonet J (1986) The four plutonic belts of the Transhimalaya-Himalaya: a chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. J Petrol 27:219–250

    Article  Google Scholar 

  • DeCelles PG, Robinson DM, Zandt G (2002) Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics 21:12-11–12-25

    Article  Google Scholar 

  • Ding H et al (2016) Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth Planet Sci Lett 435:64–73

    Article  Google Scholar 

  • Edwards M, Pêcher A, Kidd W, Burchfiel B, Royden L (1999) Southern Tibet Detachment System at Khula Kangri, Eastern Himalaya: a large-area, shallow detachment stretching into Bhutan? J Geol 107:623–631

    Article  Google Scholar 

  • England P, Houseman G (1989) Extension during continental convergence, with application to the Tibetan Plateau. J Geophys Res Solid Earth 94:17561–17579

    Article  Google Scholar 

  • England P, Searle M (1986) The Cretaceous-Tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet. Tectonics 5:1–14

    Article  Google Scholar 

  • Gaetani M, Garzanti E (1991) Multicyclic History of the Northern India Continental Margin (Northwestern Himalaya) (1). Aapg Bull 75:1427–1446

    Google Scholar 

  • Garzanti E (1999) Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. J Asian Earth Sci 17:805–827

    Article  Google Scholar 

  • Godin L, Brown RL, Hanmer S, Parrish R (1999) Back folds in the core of the Himalayan orogen: an alternative interpretation. Geology 27:151–154

    Article  Google Scholar 

  • Guo L, Zhang J, Zhang B (2008) Structures, kinematics, thermochronology and tectonic evolution of the Ranba gneiss dome in the northern Himalaya. Prog Nat Sci 18:851–860 (in Chinese)

    Article  Google Scholar 

  • Harrison TM, Copeland P, Kidd WSF, Lovera OM (1995) Activation of the Nyainqentanghla Shear Zone: implications for uplift of the southern Tibetan Plateau. Tectonics 14:658–676

    Article  Google Scholar 

  • Hauck ML, Nelson KD, Brown LD, Zhao W, Ross AR (1998) Crustal structure of the Himalayan orogen at ∼90 east longitude from Project INDEPTH deep reflection profiles. Tectonics 17:481–500

    Article  Google Scholar 

  • Hirth G, Tullis J (1992) Dislocation creep regimes in quartz aggregates. J Struct Geol 14:145–159

    Article  Google Scholar 

  • Jiménez-Munt I, Platt JP (2006) Influence of mantle dynamics on the topographic evolution of the Tibetan Plateau: results from numerical modeling. Tectonics 25:1–17

    Article  Google Scholar 

  • Kawakami T, Aoya M, Wallis S, Lee J, Terada K, Wang Y, Heizler M (2007) Contact metamorphism in the Malashan dome, North Himalayan gneiss domes, southern Tibet: an example of shallow extensional tectonics in the Tethys Himalaya. J Metamorph Geol 25:831–853

    Article  Google Scholar 

  • Klootwijk CT, Conaghan PJ, Powell CM (1985) The Himalayan Arc: large-scale continental subduction, oroclinal bending and back-arc spreading. Earth Planet Sci Lett 75:167–183

    Article  Google Scholar 

  • Langille J, Lee J, Hacker B, Seward G (2010) Middle crustal ductile deformation patterns in southern Tibet: insights from vorticity studies in Mabja Dome. J Struct Geol 32:70–85

    Article  Google Scholar 

  • Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard S, Upreti B, Vidal P (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics 134:39–57

    Article  Google Scholar 

  • Lederer G, Cottle J, Jessup M, Langille J, Ahmad T (2013) Timescales of partial melting in the Himalayan middle crust: insight from the Leo Pargil dome, northwest India. Contrib Mineral Petrol 166:1415–1441

    Article  Google Scholar 

  • Lee J, Whitehouse MJ (2007) Onset of mid-crustal extensional flow in southern Tibet: evidence from U/Pb zircon ages. Geology 35:45

    Article  Google Scholar 

  • Lee J et al (2000) Evolution of the Kangmar Dome, southern Tibet: structural, petrologic, and thermochronologic constraints. Tectonics 19:872–895

    Article  Google Scholar 

  • Lee J, Hacker B, Wang Y (2004) Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet. J Struct Geol 26:2297–2316

    Article  Google Scholar 

  • Lee J, McClelland W, Wang Y, Blythe A, McWilliams M (2006) Oligocene-Miocene middle crustal flow in southern Tibet: geochronology of Mabja Dome. Geol Soc Lond Spec Publ 268:445–469

    Article  Google Scholar 

  • Lee J, Hager C, Wallis SR, Stockli DF, Whitehouse MJ, Aoya M, Wang Y (2011) Middle to late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet. Tectonics 30:1–26

    Article  Google Scholar 

  • Liang W, Yang Z, Zheng Y (2015) The Zhaxikang Pb–Zn deposit: Ar–Ar age of sericite and its metallogenic significance. Acta Geol Sin 89:560–568 (in Chinese with English abstract)

    Google Scholar 

  • Liu G, Einsele G (1994) Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geol Rundsch 83:32–61

    Article  Google Scholar 

  • Liu M, Yang Y (2003) Extensional collapse of the Tibetan Plateau: results of three-dimensional finite element modeling. J Geophys Res Solid Earth 108:1–15

    Google Scholar 

  • Mahéo G et al (2007) Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben. Earth Planet Sci Lett 256:233–243

    Article  Google Scholar 

  • McCaffrey R, Nabelek J (1998) Role of oblique convergence in the active deformation of the Himalayas and southern Tibet plateau. Geology 26:691–694

    Article  Google Scholar 

  • McCallister AT, Taylor MH, Murphy M, Styron RH, Stockli DF (2014) Thermochronologic constraints on the late Cenozoic exhumation history of the Gurla Mandhata metamorphic core complex, Southwestern Tibet. Tectonics 33:27–52

    Article  Google Scholar 

  • Mercier J-L, Armijo R, Tapponnier P, Carey-Gailhardis E, Lin HT (1987) Change from Late Tertiary compression to Quaternary extension in southern Tibet during the India-Asia Collision. Tectonics 6:275–304

    Article  Google Scholar 

  • Mitsuishi M, Wallis SR, Aoya M, Lee J, Wang Y (2012) E–W extension at 19 Ma in the Kung Co area, S. Tibet: evidence for contemporaneous E–W and N–S extension in the Himalayan orogen. Earth Planet Sci Lett 325–326:10–20

    Article  Google Scholar 

  • Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev Geophys 31:357–396

    Article  Google Scholar 

  • Mukherjee S (2010a) Microstructures of the Zanskar shear zone. e-J Earth Sci India 3:9–27

    Google Scholar 

  • Mukherjee S (2010b) Structures in meso- and micro-scales in the sutlej section of the higher himalayan shear zone, Indian Himalaya. e-Terra 7:1–27

    Google Scholar 

  • Mukherjee S (2011a) Estimating the viscosity of rock bodies—a comparison between the Hormuz- and the Namakdan Salt Domes in the Persian Gulf, and the Tso Morari Gneiss Dome in the Himalaya. Indian J Geophys Union 15:161–170

    Google Scholar 

  • Mukherjee S (2011b) Mineral fish: their morphological classification, usefulness as shear sense indicators and genesis. Int J Earth Sci (Geol Rundsch) 100:1303–1314

    Article  Google Scholar 

  • Mukherjee S (2012) Simple shear is not so simple! Kinematics and shear senses in Newtonian viscous simple shear zones. Geol Mag 149:819–826

    Article  Google Scholar 

  • Mukherjee S (2013a) Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. Int J Earth Sci (Geol Rundsch) 102:1811–1835

    Article  Google Scholar 

  • Mukherjee S (2013b) Deformation microstructures in rocks. Springer, Berlin, pp 1–111

    Google Scholar 

  • Mukherjee S (2014a) Atlas of shear zone structures in meso-scale. Springer, Cham, pp 1–124

    Book  Google Scholar 

  • Mukherjee S (2014b) Kinematics of ‘top -to-down’ simple shear in a Newtonian Rheology. J Indian Geophys Union 18:245–248

    Google Scholar 

  • Mukherjee S (2015a) Atlas of structural geology. Elsevier, Amsterdam

    Google Scholar 

  • Mukherjee S (2015b) A review on out-of-sequence deformation in the Himalaya. In: Mukherjee S, Carosi R, van der Beek P, Mukherjee B, Robinson D (eds) Tectonics of the Himalaya, vol 412. Geological Society, London, Special Publications, London, pp 67–109

    Google Scholar 

  • Mukherjee S, Koyi HA (2010a) Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci (Geol Rundsch) 99:1267–1303

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2010b) Higher Himalayan Shear Zone, Zanskar Indian Himalaya: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. Int J Earth Sci (Geol Rundsch) 99:1083–1110

    Article  Google Scholar 

  • Mukherjee S, Mulchrone KF (2012) Estimating the viscosity and Prandtl number of the Tso Morari crystalline gneiss dome, Indian western Himalaya. Int J Earth Sci (Geol Rundsch) 101:1929–1947

    Article  Google Scholar 

  • Mukherjee S, Mukherjee B, Thiede R (2013) Geosciences of the Himalaya–Karakoram–Tibet orogen. Int J Earth Sci (Geol Rundsch) 102:1757–1758

    Article  Google Scholar 

  • Mukherjee S, Punekar JN, Mahadani T, Mukherjee R (2015) A review on intrafolial folds and their morphologies from the detachments of the western Indian Higher Himalaya. In: Mukherjee S, Mulchrone KF (eds) Ductile shear zones: from micro- to macro-scales. Wiley, New York, pp 182–205

    Chapter  Google Scholar 

  • Murphy MA (2007) Isotopic characteristics of the Gurla Mandhata metamorphic core complex: implications for the architecture of the Himalayan orogen. Geology 35:983–986

    Article  Google Scholar 

  • Murphy MA, Copeland P (2005) Transtensional deformation in the central Himalaya and its role in accommodating growth of the Himalayan orogen. Tectonics 24:1–19

    Article  Google Scholar 

  • Murphy M et al (2002) Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: implications for the eastward extent of the Karakoram fault system. Geol Soc Am Bull 114:428–447

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin, Heidelberg, p 366

    Google Scholar 

  • Pryer LL (1993) Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada. J Struct Geol 15:21–36

    Article  Google Scholar 

  • Quidelleur X, Grove M, Lovera OM, Harrison TM, Yin A, Ryerson FJ (1997) Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet. J Geophys Res Solid Earth 102:2659–2679

    Article  Google Scholar 

  • Quigley M, Liangjun Y, Xiaohan L, Wilson CJL, Sandiford M, Phillips D (2006) 40Ar/39Ar thermochronology of the Kampa Dome, southern Tibet: implications for tectonic evolution of the North Himalayan gneiss domes. Tectonophysics 421:269–297

    Article  Google Scholar 

  • Quigley MC, Liangjun Y, Gregory C, Corvino A, Sandiford M, Wilson CJL, Xiaohan L (2008) U-Pb SHRIMP zircon geochronology and T–t–d history of the Kampa Dome, southern Tibet. Tectonophysics 446:97–113

    Article  Google Scholar 

  • Ratschbacher L, Frisch W, Liu G, Chen C (1994) Distributed deformation in southern and western Tibet during and after the India-Asia collision. J Geophys Res Solid Earth 99:19917–19945

    Article  Google Scholar 

  • Schärer U, Xu R-H, Allègre CJ (1986) U (Th) Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth Planet Sci Lett 77:35–48

    Article  Google Scholar 

  • Schill E, Appel E, Zeh O, Singh VK, Gautam P (2001) Coupling of late-orogenic tectonics and secondary pyrrhotite remanences: towards a separation of different rotation processes and quantification of rotational underthrusting in the western Himalaya (northern India). Tectonophysics 337:1–21

    Article  Google Scholar 

  • Schill E, Crouzet C, Gautam P, Singh VK, Appel E (2002) Where did rotational shortening occur in the Himalayas?—Inferences from palaeomagnetic remagnetisations. Earth Planet Sci Lett 203:45–57

    Article  Google Scholar 

  • Searle M, Simpson R, Law R, Parrish R, Waters D (2003) The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. J Geol Soc 160:345–366

    Article  Google Scholar 

  • Shen F, Royden LH, Burchfiel BC (2001) Large-scale crustal deformation of the Tibetan Plateau. J Geophys Res Solid Earth 106:6793–6816

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 C. J Struct Geol 24:1861–1884

    Article  Google Scholar 

  • Styron RH, Taylor MH, Murphy MA (2011) Oblique convergence, arc-parallel extension, and the role of strike-slip faulting in the High Himalaya. Geosphere 7:582–596

    Article  Google Scholar 

  • Sun X, Zheng Y, Xu J, Huang L, Guo F, Gao S (2016) Metallogenesis and ore controls of Cenozoic porphyry Mo deposits in the Gangdese belt of southern Tibet. Ore Geol Rev. doi:10.1016/j.oregeorev.2016.01.009

    Google Scholar 

  • Thiede RC, Arrowsmith JR, Bookhagen B, McWilliams M, Sobel ER, Strecker MR (2006) Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India. Geol Soc Am Bull 118:635–650

    Article  Google Scholar 

  • Wagner T, Lee J, Hacker BR, Seward G (2010) Kinematics and vorticity in Kangmar Dome, southern Tibet: testing midcrustal channel flow models for the Himalaya. Tectonics 29:1–26

    Article  Google Scholar 

  • Wang E, Burchfiel BC (1997) Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. Int Geol Rev 39:191–219

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

  • Yin A (2010) Cenozoic tectonic evolution of Asia: a preliminary synthesis. Tectonophysics 488:293–325

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Yin A, Harrison TM, Ryerson F, Wenji C, Kidd W, Copeland P (1994) Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. J Geophys Research 99:18175–118175

    Article  Google Scholar 

  • Yin A et al (1999) Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geol Soc Am Bull 111:1644–1664

    Article  Google Scholar 

  • Zhang H et al (2004) Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett 228:195–212

    Article  Google Scholar 

  • Zhang B, Zhang J, Guo L (2006) Fractal analysis of dynamicically recrystallized quartz grains and estimation of mainly rheological parameters of the Ranba ductile shear zone, Northern Himalayan dome belt. Chin J Geol 41:158–169 (in Chinese with English abstract)

    Google Scholar 

  • Zhang J, Guo L, Zhang B (2007) Structure and kinematics of the Yalashanbo dome in the Northern Himalayan dome belt. China Chin J Geol 42:16–30 (in Chinese with English abstract)

    Google Scholar 

  • Zhang J, Yang X, Qi G, Wang D (2011) Geochronology of the Malashan dome and its application in formation of the Southern Tibet detachment system (STDS) and Northern Himalayan gneiss domes (NHGD). Acta Petrol Sin 27:3535–3544 (in Chinese with English abstract)

    Google Scholar 

  • Zhang J, Santosh M, Wang X, Guo L, Yang X, Zhang B (2012) Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Res 21:939–960

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the China Geological Survey Program (DD20160015). Invaluable assistance in the field was provided by Xizang Huayu Mining. The authors would like to thank Bangguo Zhou, Jianyang Wu, Zhi Zhang, Chengshi Qing and Guangyu Liao for support during field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Li, G., Wang, G. et al. First field identification of the Cuonadong dome in southern Tibet: implications for EW extension of the North Himalayan gneiss dome. Int J Earth Sci (Geol Rundsch) 106, 1581–1596 (2017). https://doi.org/10.1007/s00531-016-1368-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1368-2

Keywords

Navigation