Skip to main content
Log in

Constraining the alteration history of a Late Cretaceous Patagonian volcaniclastic bentonite–ash–mudstone sequence using K–Ar and 40Ar/39Ar isotopes

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Smectite is typically considered unsuitable for radiometric dating, as argon (40Ar) produced from decay of exchangeable potassium (40K) located in the interlayer sites can be lost during fluid–rock interaction and/or during wet sample preparation in the laboratory. However, age analysis of Late Cretaceous Argentinian bentonites and associated volcaniclastic rocks from Lago Pellegrini, Northern Patagonia, indicates that, in the case of these very low-permeability rocks, the radioactive 40Ar was retained and thus can provide information on smectite age and the timing of rock alteration. This study presents isotopic results that indicate the ash-to-bentonite conversion and alteration of the overlying tuffaceous mudstones in Northern Patagonia was complete ~13–17 my after middle Campanian sedimentation when the system isotopically closed. The general absence of illite in these smectite-rich lithologies reflects the low activity of K and the low temperature (<60 °C) of the formation waters that altered the parent ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguirre-Urreta B, Tunik M, Naipauer M, Pazos P, Ottone E, Fanning M, Ramos VA (2011) Malargüe Group (Maastrichtian–Danian) deposits in the Neuquén Andes, Argentina: implications for the onset of the first Atlantic transgression related to Western Gondwana break-up. Gondwana Res 19:482–494. doi:10.1016/j.gr.2010.06.008

    Article  Google Scholar 

  • Alt JC, France-Lanord C, Floyd PA, Paterno C, Galy A (1992) Low-temperature hydrothermal alteration of Jurassic ocean crust, Site 801. In: Larson R, Lancelot Y et al (eds) Proceedings of the ocean drilling program, scientific results, College Station, TX (Ocean Drilling Program), vol 129, pp 415–427. doi:10.2973/odp.proc.sr.129.132.1992

  • April RH (1981) Trioctahedral smectite and interstratified chlorite/smectite in Jurassic strata of the Connecticut Valley. Clays Clay Miner 29:31–39. doi:10.1346/CCMN.1981.0290105

    Article  Google Scholar 

  • Aronson JL, Douthitt CB (1986) K/Ar systematic of an acid-treated illite/smectite: implications for evaluating age and crystal structure. Clays Clay Miner 34:473–482. doi:10.1346/ccmn.1986.0340414

    Article  Google Scholar 

  • Bechtel A, Elliott WC, Wampler JM, Oszczepalski S (1999) Clay mineralogy, crystallinity, and K–Ar ages of illites within the Polish Zechstein Basin; implications for the age of Kupferschiefer mineralization. Econ Geol 94:261–272. doi:10.2113/gsecongeo.94.2.261

    Article  Google Scholar 

  • Bergaya F, Lagaly G, Vayer M (2006) Cation and anion exchange. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science. Elsevier, Amsterdam, pp 979–1001. doi:10.1016/S1572-4352(05)01036-6

    Google Scholar 

  • Bonhomme MG, Thuizat R, Pinault Y, Clauer N, Wendling R, Winkler R (1975) Methode de datation potassium—argon. Appareillage et Technique (The potassium—argon dating method). Notes technique de l’Institut de Géologie, Université Louis Pasteur, Strasbourg, 3, 53 pp

  • Chipera SJ, Bish DL (2001) Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses. Clays Clay Miner 49:398–409. doi:10.1346/CCMN.2001.0490507

    Article  Google Scholar 

  • Christidis GE (2001) Formation and growth of smectites in bentonites: a case study from Kimolos Island, Aegean, Greece. Clays Clay Miner 49:204–215. doi:10.1346/ccmn.2001.0490303

    Article  Google Scholar 

  • Christidis GE, Huff WD (2009) Geological aspects and genesis of bentonites. Elements 5:93–98. doi:10.2113/gselements.5.2.93

    Article  Google Scholar 

  • Clauer N (2013) The K–Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals. Chem Geol 354:163–185. doi:10.1016/j.chemgeo.2013.05.030

    Article  Google Scholar 

  • Clauer N, Giblin P, Lucas J (1984) Sr and Ar isotope studies of detrital smectite from the Atlantic ocean (D.S.D.P., Legs 43, 48 and 50). Isot Geosci 2:141–151. doi:10.1016/0009-2541(84)90185-2

    Google Scholar 

  • Clauer N, Zwingmann H, Liewig N, Wendling R (2012) Comparative 40Ar/39 Ar and K–Ar dating of illite-type clay minerals: a tentative explanation for age identities and differences. Earth Sci Rev 115:76–96. doi:10.1016/j.earscirev.2012.07.003

    Article  Google Scholar 

  • Dalrymple GB, Lanphere MA (1969) Potassium—argon dating. Freeman, San Francisco

    Google Scholar 

  • Gasparini Z, Casadio S, Fernàndez M, Salgodo L (2001) Marine reptiles from the Late Cretaceous of northern Patagonia. J South Am Earth Sci 14:51–60. doi:10.1016/S0895-9811(01)00012-8

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (eds) (2004) A geologic time scale 2004. Cambridge University Press, Cambridge. doi:10.1017/s001675680521141x

    Google Scholar 

  • Grathoff G, Moore D (1996) Illite polytype quantification using WILDFIRE—calculated patterns. Clays Clay Miner 44:835–842. doi:10.1346/ccmn.1996.0440615

    Article  Google Scholar 

  • Haines SH, van der Pluijm BA (2008) Clay quantification and Ar–Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico. J Struct Geol 30:525–538. doi:10.1016/j.jsg.2007.11.012

    Article  Google Scholar 

  • Harrington JF, Horseman ST (1999) Gas transport properties of clays and mudrocks. In: Aplin AC, Fleet AJ, Macquaker JHS (eds) Muds and mudstones: physical and fluid flow properties. Geol Soc Lond Spec Publ 158:107–124. doi:10.1144/gsl.sp.1999.158.01.09

  • Hassanipak AA, Wampler JM (1996) Radiogenic argon released by stepwise heating of glauconite and illite: the influence of composition and particle size. Clays Clay Miner 44:717–726. doi:10.1346/ccmn.1996.0440601

    Article  Google Scholar 

  • Hay RL, Gludman SG (1987) Diagenetic alteration of silicic ash in Searles Lake, California. Clays Clay Miner 35:449–457. doi:10.1346/ccmn.1987.0350605

    Article  Google Scholar 

  • Hazen RM, Sverjensky DA, Azzolini D, Bish D, Elmore SC, Hinnov L, Milliken RE (2013) Clay mineral evolution. Am Mineral 98:2007–2029. doi:10.2138/am.2013.4425

    Article  Google Scholar 

  • Hofmann H (2003) Einfluss konzentrierter Salzlösungen auf die physiko-chemischen Eigenschaften quellfähiger Tonminerale: Konsequenzen für den Einsatz von Bentonit als Versatzmaterial in einem Endlager für schwach- und mittelradioaktive Abfälle in Salzformationen. Dissertation of the University of Heidelberg, 140 pp

  • Hofmann H, Bauer A, Warr LN (2002) XCharge—ein Programm zur Berechnung der Schichtladung und Schichtladungsverteilung niedrig geladener Phyllosilikate mit Hilfe der Alkylammonium-Methode: Grundlagen und Benutzerhandbuch. Band 6744 von Forschungszentrum Karlsruhe Technik und Umwelt, Wissenschaftliche Berichte, 25 pp

  • Horseman ST, Harrington JF, Sellin P (1999) Gas migration in clay barriers. Eng Geol 54:139–149. doi:10.1016/S0013-7952(99)00069-1

    Article  Google Scholar 

  • Howell JA, Schwarz E, Spalletti L, Veiga GD (2005) The Neuquén Basin: an overview. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geol Soc Lond Spec Publ 252:1–14. doi:10.1144/gsl.sp.2005.252.01.01

  • Hunziker JC, Frey M, Clauer N, Dallmeyer RD, Friedrichsen H, Flehming W, Hochstrasser K, Roggwiller P, Schwander H (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Mineral Petrol 92:157–180. doi:10.1007/BF00375291

    Article  Google Scholar 

  • Iborra CV, Cultrone G, Cerezo P, Aguzzi C, Baschini MT, Vallés J, López-Galindo A (2006) Characterisation of northern Patagonian bentonites for pharmaceutical uses. Appl Clay Sci 31:272–281. doi:10.1016/j.clay.2005.11.002

    Article  Google Scholar 

  • Impiccini A (1995) Mineralogía de la fracción no arcillosa de las bentonitas del Cretácico superior de la región Norpatagonia. PhD thesis, Univ. Nac. La Plata

  • Janssen C, Wirth R, Lin A, Dresen G (2013) TEM microstructural analysis in a fault gouge sample of the Nojima Fault Zone, Japan. Tectonophysics 583:101–104. doi:10.1016/j.tecto.2012.10.020

    Article  Google Scholar 

  • Kim J, Peacor DR, Tessier D, Elsass F (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays Clay Miner 43:51–57. doi:10.1346/ccmn.1995.0430106

    Article  Google Scholar 

  • Lagaly G (1994) Layer charge determination by alkylammonium ions. In: Mermut AR (ed) Layer charge characteristics of 2:1 silicate clay minerals. CMS workshop lectures. Clay Min Soc 6:1–46. doi:10.1346/cms-wls-6.1

  • Lagaly G, Weiss A (1971) Anordnung und Orientierung kationischer Tenside auf Silicatoberflächen. Teil IV: Anordnung von n-Alkylammoniumionen bei niedrig geladenen Schichtsilicaten. Kolloid Z Z Polym 243:48–55. doi:10.1007/bf01500614

    Article  Google Scholar 

  • LeBas MJ, LeMaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750. doi:10.1093/petrology/27.3.745

    Article  Google Scholar 

  • Lehikoinen J, Carlsson J, Muurinen A, Olin M, Salonen P (1996) Evaluation of factors affecting diffusion in compacted bentonite. Mater Res Soc Symp Proc 412:675–682. doi:10.1557/proc-412-675

    Article  Google Scholar 

  • LoBello P, Feraud G, Hall CM, York D, Lavina P, Bernat M (1987) 40Ar/39Ar step-heating and laser fusion dating of a quaternary volcanic from Neschers, Massif Central, France: the defeat of xenocrystic contamination. Chem Geol 66:61–71. doi:10.1016/0168-9622(87)90029-7

    Google Scholar 

  • Lombardi B, Baschini M, Torres-Sánchez RM (2003) Bentonite deposits of northern Patagonia. Appl Clay Sci 22:309–312. doi:10.1016/j.clay.2005.11.002

    Article  Google Scholar 

  • Mahon K (1996) The new “York” regression; application of an improved statistical method to geochemistry. Int Geol Rev 38:293–303. doi:10.1080/00206819709465336

    Article  Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method, 2nd edn. Oxford University Press, Oxford. doi:10.1093/petrology/41.12.1823

    Google Scholar 

  • Mermut AR, Lagaly G (2001) Baseline studies of the clay minerals society source clays: layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays Clay Miner 49:393–397. doi:10.1346/ccmn.2001.0490506

    Article  Google Scholar 

  • Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, Oxford. doi:10.1017/s0016756898501501

    Google Scholar 

  • Musso TB, Roehl KE, Pettinari G, Vallés JM (2010) Assessment of smectite-rich claystones from North Patagonia for their use as liner materials in landfills. Appl Clay Sci 48:438–445. doi:10.1016/j.clay.2010.02.001

    Article  Google Scholar 

  • Nauman TE, Crawford Elliott W, Wampler JM (2012) K–Ar age constraints on the origin of micaceous minerals in Savannah River Site Soils, South Carolina, USA. Clays Clay Miner Minerals 60:496–506. doi:10.1346/ccmn.2012.0600506

    Article  Google Scholar 

  • Odin GS (1982) Interlaboratory standards for dating purposes. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, New York, pp 123–149. doi:10.1016/1359-0189(90)90126-i

    Google Scholar 

  • Odin GS, Bonhomme MG (1982) Argon behaviour in clays and glauconies during preheating experiments. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, New York, pp 333–343

    Google Scholar 

  • Pevear DR (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka YK, Maest AS (eds) Proceedings of the 7th international symposium on water-rock interaction. Balkema, Rotterdam, Netherlands, pp 1251–1254

  • Smith JV, Yoder HS Jr (1956) Experimental and theoretical studies of the mica polymorphs. Mineral Mag 31:209–331. doi:10.1180/minmag.1956.031.234.03

    Article  Google Scholar 

  • Solum JG, van der Pluijm BA, Peacor DR, Warr LN (2003) Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California. J Geophys Res Solid Earth 108(B5):2233. doi:10.1029/2002JB001858

    Article  Google Scholar 

  • Środoń J, Morgan DJ, Eslinger EV, Eberl DD, Karlinger MR (1986) Chemistry of illite/smectite and end-member illite. Clays Clay Miner 34:368–378. doi:10.1346/ccmn.1986.0340403

    Article  Google Scholar 

  • Szczerba M, Środoń J (2009) Extraction of diagenetic and detrital ages and of the 40Kdetrital/40Kdiagenetic ratio from K–Ar dates of clay fraction. Clays Clay Miner 57:93–103. doi:10.1346/ccmn.2009.0570109

    Article  Google Scholar 

  • Turner RJW, Ames DE, Franklin JM, Goodfellow WD, Leitch CHB, Höy T (1993) Character of active hydrothermal mounds and nearby altered hemipelagic sediments in the hydrothermal areas of Middle Valley, Northern Juan de Fuca Ridge: data on shallow cores. Can Miner 31:973–999. doi:10.4095/132633

    Google Scholar 

  • Vallés JM, Giusiano A (2001) Bentonitic and kaolin deposits in extra-Andean Patagonia and soils in the Andean region. Post-conference field excursion July 29–August 1st, 2001. In: The 12th international clay conference, Universida Nacional de sur Bahia Blanca- Argentina, 59 pp

  • Vallés JM, Burlando L, Chiachiarini P, Giaveno M, Impiccini A (1989) Geological and genetical features of the Upper Cretaceous bentonite deposit from North Patagonia. PICG, 24, Cretácico América Latina, Buenos Aires, pp 79–98

  • van der Pluijm B, Hall C, Vrolijk P, Pevear D, Covey M (2001) The dating of shallow faults in the Earth’s crust. Nature 412:172–175. doi:10.1038/35084053

    Article  Google Scholar 

Download references

Acknowledgments

Raymond Wendling of the former Centre de la Geochimie de la Surface in Strasbourg (ULP-CNRS) is thanked for K–Ar isotopic analyses and Chris Hall (Uni-Michigan) for 40Ar/39Ar analysis of the mica sample. Manfred Zander's help with the electron microscopy analyses is also acknowledged. The study was supported by the DFG, Wa 803/4-1 (LNW) and the National Science Foundation, EAR-1118704 (BvdP). Georg Grathoff and Peter Vrolijk are thanked for helpful comments on an early version of the manuscript. We also acknowledge the feedback of Masafumi Sudo (Uni-Potsdam) and an anonymous reviewer for their constructive input that led to improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Warr.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warr, L.N., Hofmann, H. & van der Pluijm, B.A. Constraining the alteration history of a Late Cretaceous Patagonian volcaniclastic bentonite–ash–mudstone sequence using K–Ar and 40Ar/39Ar isotopes. Int J Earth Sci (Geol Rundsch) 106, 255–268 (2017). https://doi.org/10.1007/s00531-016-1315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1315-2

Keywords

Navigation