Skip to main content
Log in

Geochemical composition, petrography and 40Ar/39Ar age of the Heldburg phonolite: implications on magma mixing and mingling

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Differentiated magmatic rocks such as trachyte and phonolite are volumetrically subordinate to mafic volcanic rocks within the Cenozoic Central European Volcanic Province (exceptions are the East Eifel and the Rhön volcanic fields). Within the volcanic field of the “Heldburg dike swarm” (Heldburger Gangschar), the phonolite of the Burgberg near Heldburg represents the only known occurrence of differentiated magmatic rocks. However, the Heldburg phonolite is famous foremost for containing mantle xenoliths (spinel lherzolite). Former studies proposing a cogenetic relationship between the phonolite and the peridotites concluded that the phonolite magma must have evolved under upper mantle conditions. Herewith, we present petrographic and geochemical evidence for magma mixing and mingling in the Heldburg phonolite melt due to the intrusion of mantle-derived basanitic magma, which is exposed today as dikes at the foot of the Heldburg Burgberg. During this process, the mantle xenoliths were introduced into the phonolite melt as they all contain rims of basanitic magma. Extensive mingling features (e.g., schlieren layers, load casts, flame structures, mafic enclaves) are developed, indicating that the basanite and the zoned phonolitic body were melts at the time of mixing. These petrographic and geochemical indications of two coeval melts of different composition are substantiated by 40Ar/39Ar dating, revealing identical ages of ca. 15 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abratis M, Mädler J, Hautmann S, Leyk H-J, Meyer R, Lippolt HJ, Viereck-Götte L (2007) Two distinct Miocene age ranges of basaltic rocks from the Rhön and Heldburg areas (Germany) based on 40Ar/39Ar step heating data. Chem Erde 67:133–150. doi:10.1016/j.chemer.2006.03.003

    Article  Google Scholar 

  • Baxter S, Feely M (2002) Magma mixing and mingling textures in granitoids; examples from the Galway Granite, Connemara, Ireland. Mineral Petrol 76:63–74

    Article  Google Scholar 

  • Berger J, Ennih N, Liégeois JP (2014) Extreme trace elements fractionation in Cenozoic nephelinites and phonolites from the Moroccan anti-Atlas (Eastern Saghro). Lithos 210–211:69–88

    Article  Google Scholar 

  • Blake DH, Elwell RWD, Gibson IL, Skelhorn RR, Walker GPL (1965) Some relationships resulting from the intimate association of acid and basic magmas. Q J Geol Soc 121:31–49

    Article  Google Scholar 

  • Bogaard PJF, Wörner G, Henjes-Kunst F (2001) Chemical stratigraphy and origin of volcanic rocks from the drill-core “Forschungsbohrung Vogelsberg 1996”, Germany. Geologische Abhandlungen Hessen 107:69–99

    Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Browne BL, Eichelberger JC, Patino LC, Vogel TA, Dehn J, Uto K, Hoshizumi H (2006) Generation of porphyritic and equigranular mafic enclaves during magma recharge events at Unzen Volcano, Japan. J Petrol 47:301–328

    Article  Google Scholar 

  • Büchel G (ed) (1994) Vulkanologische Karte West- und Hocheifel 1: 50.000. Landesvermessungsamt Rheinland-Pfalz, Koblenz

  • Cebria JM, Wilson M (1995) Cenozoic mafic magmatism in Western/Central Europe: a common European asthenospheric reservoir? Terra Nova Abstr Suppl 7:162

    Google Scholar 

  • Di Vincenzo G, Rocchi S (1999) Origin and interaction of mafic–felsic magmas in an evolving late orogenic setting: the early Paleozoic Terra Nova Intrusive Complex, Antarctica. Contrib Mineral Petrol 137:15–35

    Article  Google Scholar 

  • Duda A, Schmincke H-U (1985) Polybaric evolution of alkali basalts from the West Eifel: evidence from green-core clinopyroxenes. Contrib Mineral Petrol 91:340–353

    Article  Google Scholar 

  • Ehrenberg K-H, Hickethier H (1985) Die Basaltbasis im Vogelsberg: Schollenbau und Hinweise zur Entwicklung der vulkanischen Abfolge. Geol Jahrbuch Hessen 113:97–135

    Google Scholar 

  • Ehrenberg K-H, Hickethier H (1994) Tertiärer Vulkanismus der Wasserkuppenrhön und Kuppenrhön. (Exkursion D1 am 7. und Exkursion D2 am 8. April 1994). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins 76:83–146

    Article  Google Scholar 

  • Emeleus CH, Bell BR (2005) British regional geology: the Palaeogene volcanic districts of Scotland, 4th edn. British Geological Survey, Nottingham

    Google Scholar 

  • Flick H, Schraft A (2013) Die Hessische Rhön: Geotope im Land der offenen Fernen. Hessisches Landesamt f. Umwelt u. Geologie, Wiesbaden

    Google Scholar 

  • Folch A, Marti J (1998) The generation of overpressure in felsic magma chambers by replenishment. Earth Planet Sci Lett 163:301–314

    Article  Google Scholar 

  • Grant TB, Milke R, Pandey S, Jahnke H (2013) The Heldburg Phonolite, Central Germany: reactions between phonolite and xenocrysts from the upper mantle and lower crust. Lithos 182–183:86–101

    Article  Google Scholar 

  • Hentschel R (2005) Petrologie der Magmatite auf Blatt 5730 Heldburg, Thüringer Teil. Diploma thesis, Univ. Jena/Freiberg (unpublished)

  • Herzberg CT (1978) Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO–MgO–Al2O3–SiO2. Geochim Cosmochim Acta 42(7):945–957

    Article  Google Scholar 

  • Herzberg CT, Chapman NA (1976) Clinopyroxene geothermometry of spinel-lherzolites. Am Mineral 61:626–637

    Google Scholar 

  • Huckenholz HG, Büchel G (1988) Tertiärer Vulkanismus der Hocheifel. Fortschr Mineral 66(2):43–82

    Google Scholar 

  • Huckenholz HG, Kunzmann T (1993) Tertiärer Vulkanismus im bayerischen Teil des Egergrabens und des mesozoischen Vorlandes. Beih Eur J Mineral 5:1–34

    Google Scholar 

  • Huckenholz HG, Schröder B (1981) Die Alkalibasaltassoziation der Heldburger Gangschar (Exkursion I am 25. April 1981). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins 63:125–138

    Article  Google Scholar 

  • Huckenholz HG, Schröder B (1985) Tertiärer Vulkanismus im bayerischen Teil der Eger Grabens und des mesozoischen Vorlandes (Exkursion G am 13. April 1985). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins 67:107–124

    Article  Google Scholar 

  • Huckenholz HG, Werner CD (1990) Die tertiären Vulkanite der Heldburger Gangschar (Bayerisch-thüringisches Grabfeld). Eur J Mineral 2:1–42

    Google Scholar 

  • Irving AJ, Price RC (1981) Geochemistry and evolution of lherzolite-bearing phonolitic lavas from Nigeria, Australia, East Germany and New Zealand. Geochim Cosmochim Acta 45(8):1309–1320

    Article  Google Scholar 

  • Jellinek MA, Kerr RC (1999) Mixing and compositional layering produced by natural convection: part 2. Applications to the differentiation of basaltic and silicic magma chambers, and komatiite lava flows. J Geophys Res 104:7203–7218

    Article  Google Scholar 

  • Jung S, Vieten K, Romer RL, Mezger K, Hoernes S, Satir M (2012) Petrogenesis of tertiary alkaline magmas in the Siebengebirge, Germany. J Petrol 53:2381–2409

    Article  Google Scholar 

  • Jung S, Mezger K, Hauff F, Pack A, Hoernes S (2013) Petrogenesis of rift-related tephrites, phonolites and trachytes (Central European Volcanic Province, Rhön, FRG): constraints from Sr, Nd, Pb and O isotopes. Chem Geol 354:203–215

    Article  Google Scholar 

  • Kaiser G, Pilot J (1986) Weitere K–Ar-Datierungen an jungen Vulkaniten. Z Geol Wiss 14(1):121–124

    Google Scholar 

  • Kolb M, Paulick H, Kirchenbaur M, Münker C (2012) Petrogenesis of mafic to felsic lavas from the Oligocene Siebengebirge volcanic field (Germany): implications for the origin of intracontinental volcanism in central Europe. J Petrol 53:2349–2379

    Article  Google Scholar 

  • Kunzmann T (1996) Der Phonolith von der Heldburg (Thüringen); Ein Fraktionierungsprodukt alkalibasaltischer Magmen unter den Bedingungen des Oberen Mantels. Habilitation thesis, Ludwig-Maximilians-Universität München, p 149

  • Kunzmann T (2010) The solidus–liquidus phase relations of the Heldburg (Thuringia, Germany) phonolite up to 2.5 GPa. http://www.nets-work.de/phon.pdf

  • Lee J-Y, Marti K, Severinghaus JP, Kawamura K, Yoo HS, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70:4507–4512

    Article  Google Scholar 

  • Lippolt HJ (1978) K–Ar-Untersuchungen zum Alter des Rhön-Vulkanismus. Fortschr Mineral 56(1):85

    Google Scholar 

  • Lippolt HJ (1982) K/Ar age determinations and the correlation of Tertiary volcanic activity in Central Europe. Geol Jahrb D52:113–135

    Google Scholar 

  • Lippolt HJ (1983) Distribution of volcanic activity in space and time. In: Fuchs K, von Gehlen K, Mälzer H, Murawski H, Semmel A (eds) Plateau uplift; the Rhenish Shield; a case history. Springer, Berlin, pp 112–120

    Google Scholar 

  • Loeffler HK (1980) Olivine und Spinell-Peridotite als Xenolithe im nephelinitoiden Phonolith des Schlossberges von Heldburg in Thüringen. Hallesches Jahrbuch für Geowissenschaften 5:101–102

    Google Scholar 

  • Ludwig KR (2008) User’s manual for Isoplot, Version 3.70. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4:1–76

    Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65

    Article  Google Scholar 

  • Mann U, Marks M, Markl G (2006) Influence of oxygen fugacity on mineral compositions in peralkaline melts: the Katzenbuckel volcano, Southwest Germany. Lithos 91:262–285

    Article  Google Scholar 

  • Marks M, Markl G (2003) Ilimaussaq ‘en miniature’: closed system fractionation in an agpaitic dyke rock from the Gardar Province, South Greenland (contribution to the mineralogy of Ilimaussaq no. 117). Mineral Mag 67:893–920

    Article  Google Scholar 

  • Mäussnest O (1974) Die Eruptionspunkte des Schwäbischen Vulkans, Teil I. Zeitschrift der Deutschen Geologischen Gesellschaft 125:23–54

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mertes H (1983) Aufbau und Genese des Westeifeler Vulkanfeldes. Bochumer Geologische und Geotechnische Arbeiten 9:1–415

    Google Scholar 

  • Meyer R, Abratis M, Viereck-Götte L, Mädler J, Hertogen J, Romer RL (2002) Mantelquellen des Vulkanismus in der thüringischen Rhön. Beitr Geol Thüringen 9:75–105

    Google Scholar 

  • Perugini D, Poli G, Mazzuoli R (2003) Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows. J Volcanol Geoth Res 124:255–279

    Article  Google Scholar 

  • Perugini D, Ventura G, Petrelli M, Poli G (2004) Kinematic significance of morphological structures generated by mixing of magmas: a case study from Salina Island (southern Italy). Earth Planet Sci Lett 222:1051–1066

    Article  Google Scholar 

  • Pfänder JA, Sperner B, Ratschbacher L, Fischer A, Meyer M, Leistner M, Schaeben H (2014) High-resolution 40Ar/39Ar dating using a mechanical sample transfer system combined with a high-temperature cell for step heating experiments and a multicollector ARGUS noble gas mass spectrometer. Geochem Geophys Geosyst. doi:10.1002/2014GC005289

    Google Scholar 

  • Poli G, Tommasini S, Halliday AN (1996) Trace element and isotopic exchange during acid-basic magma interaction processes. Geol Soc Am Spec Pap 315:225–232

    Google Scholar 

  • Pröscholdt H (1895) Eruptivgesteine. Erläuterungen zur geologischen Specialkarte von Preussen und den Thüringischen Staaten, Blatt Heldburg. J.H. Neumann, Berlin, pp 32–52

    Google Scholar 

  • Reischmann T, Schraft A (2009) Der Vogelsberg: Geotope im größten Vulkangebiet Mitteleuropas. Hessisches Landesamt f. Umwelt u. Geologie, Wiesbaden

    Google Scholar 

  • Renne PR, Deino AL, Hames WE, Heizler MT, Hemming SR, Hodges KV, Koppers AAP, Mark DF, Morgan LE, Phillips D, Singer BS, Turrin BD, Villa IM, Villeneuve M, Wijbrans JR (2009) Data reporting norms for 40Ar/39Ar geochronology. Quat Geochronol 4(5):346–352

    Article  Google Scholar 

  • Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367

    Article  Google Scholar 

  • Ryabchikov ID, Kogarko LN (1994) Redox equilibria in alkaline lavas from Trinidade Island, Brasil. Int Geol Rev 36:173–183

    Article  Google Scholar 

  • Sato H (1977) Nickel contents of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10:113–120

    Article  Google Scholar 

  • Schmincke H-U (2008) Volcanism of the East and West Eifel. In: Litt T, Schmincke H-U, Frechen M, Schlüchter C (eds) Quaternary. McCann T (ed) The geology of Central Europe, Vol. 2: Mesozoic and Cenozoic. Geological Society, London, pp 1318–1333

  • Schmincke H-U (2014) Vulkane der Eifel: Aufbau, Entstehung und heutige Bedeutung. Springer Spektrum, Berlin

    Book  Google Scholar 

  • Schreiber U (1996) Tertiärer Vulkanismus des Westerwaldes. Terra Nostra 96(7):187–212

    Google Scholar 

  • Schröder B, Peterek A (2002) Känozoische Morphotektonik und Abtragung zwischen Hochrhön und Heldburger Gangschar. Z Geol Wiss 30:263–276

    Google Scholar 

  • Sheppard S (1996) Mafic-felsic magma mingling in the Bow River Batholith of the Halls Creek Orogen. Geol Surv West Aust Annu Rev 96:56–60

    Google Scholar 

  • Simkin T, Smith JV (1970) Minor element distribution in olivine. J Geol 78:304–325

    Article  Google Scholar 

  • Sklyarov EV, Fedorovskii VS (2006) Magma mingling; tectonic and geodynamic implications. Geotectonics 40:120–134

    Article  Google Scholar 

  • Snyder D, Tait SR (1998) The imprint of basalt on the geochemistry of silicic magmas. Earth Planet Sci Lett 160:433–445

    Article  Google Scholar 

  • Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volcanol Geoth Res 29:99–124

    Article  Google Scholar 

  • Ulrych J, Pivec E, Lang M, Balogh K, Kropáček V (1999) Cenozoic intraplate volcanic rock series of the Bohemian Massif: a review. Geolines 9:123–129

    Google Scholar 

  • Ulrych J, Ackerman L, Balogh K, Hegner E, Jelínek E, Pécskay Z, Přichystal A, Upton BGJ, Zimák J, Foltýnová R (2013) Plio-Pleistocene basanitic and melilititic series of the Bohemian Massif: K–Ar ages, major/trace element and Sr–Nd isotopic data. Chem Erde 73:429–450

    Article  Google Scholar 

  • Vieten K, Hamm H-M, Grimmeisen W (1988) Tertiärer Vulkanismus des Siebengebirges. Fortschr Mineral 66(2):1–42

    Google Scholar 

  • Vogel W, Kuipers G (1987) A pre-calibrated program for geological applications. Phillips New Dev X-Ray Spectrom 11:2–8

    Google Scholar 

  • Wedepohl KH, Gohn E, Hartmann G (1994) Cenozoic alkali basaltic magmas of western Germany and their products of differentiation. Contrib Mineral Petrol 115:253–278

    Article  Google Scholar 

  • Wiebe RA (1994) Silicic magma chambers as traps for basaltic magmas: the Cadillac Mountain intrusive complex, Mount Desert Island, Maine. J Geol 102:423–437

    Article  Google Scholar 

  • Wiebe RA, Frey H, Hawkins DP (2001) Basaltic pillow mounds in the Vinalhaven intrusion, Maine. J Volcanol Geoth Res 107:171–184

    Article  Google Scholar 

  • Wilson M, Downes H (1991) Tertiary—quaternary extension related alkaline magmatism in western and central Europe. J Petrol 32:811–849

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Bernt Schröder (Bochum) for his passionate introduction into the geology of the Grabfeld, Michael Ude for the XRF analyses, Dirk Merten and Ines Kamp for ICP-MS analyses, and Sigrid Bergmann for preparation of thin sections. We appreciate detailed reviews by Stefan Jung and an anonymous reviewer, and we would like to thank Horst Kämpf and Wolf-Christian Dullo for patient and efficient editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Abratis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abratis, M., Viereck, L., Pfänder, J.A. et al. Geochemical composition, petrography and 40Ar/39Ar age of the Heldburg phonolite: implications on magma mixing and mingling. Int J Earth Sci (Geol Rundsch) 104, 2033–2055 (2015). https://doi.org/10.1007/s00531-015-1207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1207-x

Keywords

Navigation