Skip to main content
Log in

Long-term cooling history of the Albertine Rift: new evidence from the western rift shoulder, D.R. Congo

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

To determine the long-term landscape evolution of the Albertine Rift in East Africa, low-temperature thermochronology was applied and the cooling history constrained using thermal history modelling. Acquired results reveal (1) “old” cooling ages, with predominantly Devonian to Carboniferous apatite fission-track ages, Ordovician to Silurian zircon (U–Th)/He ages and Jurassic to Cretaceous apatite (U–Th–Sm)/He ages; (2) protracted cooling histories of the western rift shoulder with major phases of exhumation in mid-Palaeozoic and Palaeogene to Neogene times; (3) low Palaeozoic and Neogene erosion rates. This indicates a long residence time of the analysed samples in the uppermost crust, with the current landscape surface at a near-surface position for hundreds of million years. Apatite He cooling ages and thermal history models indicate moderate reheating in Jurassic to Cretaceous times. Together with the cooling age distribution, a possible Albertine high with a distinct relief can be inferred that might have been a source area for the Congo Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aanyu K (2011) Implications of regional fault distribution and kinematics for the uplift of rift flanks around the Rwenzori mountains, Southwestern Uganda. Thesis, Johannes Gutenberg University Mainz

  • Aanyu K, Koehn D (2011) Influence of pre-existing fabrics on fault kinematics and rift geometry of interacting segments: analogue models based on the Albertine Rift (Uganda), Western Branch-East African Rift System. J Afr Earth Sci 59:168–184. doi:10.1016/j.jafrearsci.2010.10.003

    Article  Google Scholar 

  • Abbate E, Balestrieri ML, Bigazzi G (2002) Morphostructural development of the Eritrean rift flank (southern Red Sea) inferred from apatite fission track analysis. J Geophys Res 107:2319–2331

    Article  Google Scholar 

  • Albaric J, Déverchère J, Petit C, Perrot J, Le Gall B (2009) Crustal rheology and depth distribution of earthquakes: insights from the central and southern East African Rift System. Tectonophysics 468:28–41

    Article  Google Scholar 

  • Appel P, Schenk V, Schumann A (2005) P-T path and metamorphic ages of pelitic schists at Murchison Falls, NW Uganda: evidence for a Pan-African tectonometamorphic event in the Congo Craton. Eur J Mineral 17:655–664

    Article  Google Scholar 

  • Ault AK, Flowers RM, Bowring SA (2013) Phanerozoic surface history of the Slave craton. Tectonics 32:1066–1083. doi:10.1002/tect.20069

    Article  Google Scholar 

  • Badalini G, Redfern J, Carr ID (2002) A synthesis of current understanding of the structural evolution of North Africa. J Petrol Geol 25:249–258

    Article  Google Scholar 

  • Bahat D, Mohr P (1987) Horst faulting in continental rifts. Tectonophysics 141:61–73

    Article  Google Scholar 

  • Bauer FU, Glasmacher UA, Malikwisha M, Mambo VS, Mutete BV (2010a) The Eastern Congo—a beauty spot, rediscovered from a geological point of view. Geol Tod 26:55–64

    Article  Google Scholar 

  • Bauer FU, Glasmacher UA, Ring U, Schumann A, Nagudi B (2010b) Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda. Int J Earth Sci 99:1575–1597. doi:10.1007/s00531-010-0549-7

    Article  Google Scholar 

  • Bauer FU, Karl M, Glasmacher UA, Nagudi B, Schumann A, Mroszewski L (2012) The Rwenzori Mountains of western Uganda—an approach to unravel the evolution of a remarkable morphological feature within the Albertine Rift. J Afr Earth Sci 73–74:44–56

    Article  Google Scholar 

  • Bauer FU, Glasmacher UA, Ring U, Karl M, Schumann A, Nagudi B (2013) Tracing the exhumation history of the Rwenzori Mountains, Albertine Rift, Uganda, using low-temperature thermochronology. Tectonophysics 599:8–28

    Article  Google Scholar 

  • Bierman PR, Corbett LB, Graly JA, Neumann TA, Lini A, Crosby BT, Rood DH (2014) Preservation of a preglacial landscape under the center of the Greenland Ice Sheet. Science 344:402–405

    Article  Google Scholar 

  • Bradley G, Carter A, Taylor RG (2010) Denudation history of Permo Carboniferous glacial strata and Precambrian basement on the East African Plateau adjacent to the Eastern Flank of the Western Rift. In: Thermo2010, 12th international conference on thermochronology, Glasgow, 16–20 August 2010

  • Bumby AJ, Guiraud R (2005) The geodynamic setting of the Phanerozoic basins of Africa. J Afr Earth Sci 43:1–12

    Article  Google Scholar 

  • Burgoyne PM, van Wyk AE, Anderson JM, Schrire BD (2005) Phanerozoic evolution of plants on the African plate. J Afr Earth Sci 43:13–52

    Article  Google Scholar 

  • Burke K, Macgregor DS, Cameron N (2003) African petroleum systems: four tectonic “aces” in the past 600 million years. In: Arthur TJ, Macgregor DS, Cameron NR (eds) Petroleum geology of Africa: new themes and developing technologies, vol 207. Geological Society, London, Special Publications, pp 21–60

    Google Scholar 

  • Burov E, Cloetingh S (1997) Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins. Earth Planet Sci Lett 150:7–26

    Article  Google Scholar 

  • Cahen L, Lepersonne J (1981) Late Palaeozoic tillites of the Congo Basin in Zaire. In: Hambrey MJ, Harland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp 43–47

    Google Scholar 

  • Cahen L, Ferrand JJ, Haarsma MJF, Lepersonne J, Verbeek T (1959) Description du Sondage de Samba: Ann Mus roy Afr cent, Tervuren (Belgique), Série in-8°, Sciences géologiques 29

  • Catuneanu O, Wopfner H, Eriksson PG, Cairncross B, Rubidge BS, Smith RMH, Hancox PJ (2005) The Karoo basins of south-central Africa. J Afr Earth Sci 43:211–253

    Article  Google Scholar 

  • Delvaux D (1991) The Karoo to Recent Rifting in the Western Branch of the East-African Rift System: a Bibliographical Synthesis. Mus roy Afr centr, Tervuren (Belg). Dept Geol Min, Rapp ann 1989–1990:63–83

    Google Scholar 

  • Delvaux D (2001) Karoo rifting in western Tanzania: precursor of Gondwana break-up? In: Contributions to geology and paleontology of Gondwana. In honour of Prof. Dr. Helmut Wopfner, Cologne, pp 111–125

  • Delvaux D, Kervyn F, Macheyeki AS, Temu EB (2012) Geodynamic significance of the TRM segment in the East African Rift (W-Tanzania): active tectonics and paleostress in the Ufipa plateau and Rukwa basin. J Struct Geol 37:161–180

    Article  Google Scholar 

  • Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics II: crystallographic orientation effects. Am Min 84:1224–1234

    Article  Google Scholar 

  • Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. Rev Mineral Geochem 58:49–94

    Article  Google Scholar 

  • Dunkl I (2002) Trackkey: a Windows program for calculation and graphical presentation of fission track data. Comput Geosci 28:3–12

    Article  Google Scholar 

  • Ebinger CJ (1989) Tectonic development of the western branch of the East African rift system. Geol Soc Am Bull 101:885–903

    Article  Google Scholar 

  • Ebinger CJ, Furman T (2002) Geodynamical setting of the Virunga Volcanic Province, East Africa. Acta Vulcanol 14:1–8

    Google Scholar 

  • Ebinger CJ, van Wijk J, Keir D (2013) The time scales of continental rifting: implications for global processes. Geol Soc Am Spec Pap 500:1–13

    Google Scholar 

  • Ehlers TA, Chaudhri T, Kumar S, Fuller CW, Willett SD, Ketcham RA, Brandon MT et al (2005) Computational tools for low-temperature thermochronometer interpretation. Rev Mineral Geochem 58:589–622

    Article  Google Scholar 

  • Emmel B, Jöns N, Kroener A, Jacobs J, Wartho J-A, Schenk V, Razakamanana T, Austegard A (2008) From closure of the mozambique ocean to gondwana breakup: new evidence from geochronological data of the vohibory terrane, Southwest Madagascar. J Geol 116:21–38

    Article  Google Scholar 

  • Eyles N (2008) Glacio-epochs and the supercontinent cycle after ∼3.0 Ga: tectonic boundary conditions for glaciation. Palaeogeogr Palaeocl 258:89–129

    Article  Google Scholar 

  • Fabre J (1988) Les séries Paléozoiques d'Afrique: une approche. J Afr Earth Sci 7:1–40

    Article  Google Scholar 

  • Farley KA (2000) Helium diffusion from apatite: general behaviour as illustrated by Durango fluorapatite. J Geophys Res 105(B2):2903–2914

    Article  Google Scholar 

  • Farley KA (2002) (U–Th)/He dating: techniques, calibrations, and applications. Rev Mineral Geochem 47:819–844

    Article  Google Scholar 

  • Farley KA (2007) He diffusion systematic in minerals: evidence from synthetic monazite and zircon structure phosphates. Geochim Cosmochim Acta 71:4015–4024

    Article  Google Scholar 

  • Farley KA, Wolf RA, Silver LT (1996) The effects of long-alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229

    Article  Google Scholar 

  • Fitzgerald PG, Baldwin SL, Webb LE, O’Sullivan PB (2006) Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 225:91–120

    Article  Google Scholar 

  • Flowers RM (2009) Exploiting radiation damage control on apatite (U–Th)/He dates in cratonic regions. Earth Planet Sci Lett 277:148–155

    Article  Google Scholar 

  • Flowers RM, Bowring SA, Reiners PW (2006) Low long-term erosion rates and extreme continental stability documented by ancient (U–Th)/He dates. Geology 34:925–928

    Article  Google Scholar 

  • Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Acta 73:2347–2365. doi:10.1016/j.gca.2009.01.015

    Article  Google Scholar 

  • Foster DA, Gleadow AJW (1992) The morphotectonic evolution of rift-margin mountains in central Kenya: constraints from apatite fission-track thermochronology. Earth Planet Sci Lett 113:157–171

    Article  Google Scholar 

  • Foster DA, Gleadow AJW (1996) Structural framework and denudation history of the flanks of the Kenya and Anza Rifts, East Africa. Tectonics 15:258–271

    Article  Google Scholar 

  • Fritz H, Tenczer V, Hauzenberger CA, Wallbrecher E, Hoinkes G (2005) Central Tanzanian tectonic map: a step forward to decipher Proterozoic structural events in the East African Orogen. Tectonics 24:TC6013

    Article  Google Scholar 

  • Galbraith RF (1981) On statistical models for fission track counts. Math Geol 13:471–478

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR (1981) A natural longterm track annealing experiment for apatite. Nucl Tracks 5:169–174

    Article  Google Scholar 

  • Green PF (1981) ‘Track-in track’ length measurements in annealed apatites. Nuclear Tracks 5:121–128

    Article  Google Scholar 

  • Green PF (1988) The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth Planet Sci Lett 89:335–352

    Article  Google Scholar 

  • Green PF, Durrani SA (1977) Annealing studies of tracks in crystals. Nucl Track Detect 1:33–39

    Article  Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1986) Thermal annealing of fission tracks in apatite, 1. A qualitative description. Chem Geol 59:237–253

    Article  Google Scholar 

  • Green PF, Crowhurst PV, Duddy IR, Japsen P, Holford SP (2006) Conflicting (U–Th)/He and fission track ages in apatite: enhanced He retention, not anomalous annealing behaviour. Earth Planet Sci Lett 250:407–427

    Article  Google Scholar 

  • Green PF, Lidmar-Bergström K, Japsen P, Bonow JM, Chalmers JA (2013) Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins. Geol Surv Den Greenl Bull 30:1–150

    Google Scholar 

  • Guenthner WR, Reiners PW, Ketcham RK, Nasdala L, Giester G (2013) Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U–Th)/He thermochronology. Am J Sci 313:145–198. doi:10.2475/03.2013.01

    Article  Google Scholar 

  • Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central Africa: an overview. J Afr Earth Sci 43:83–148

    Article  Google Scholar 

  • Hourigan JK, Reiners PW, Brandon MT (2005) U–Th zonation-dependent alpha-ejection in (U–Th)/He chronometry. Geochim Cosmochim Acta 69:3349–3365

    Article  Google Scholar 

  • Isbell JL, Henry LC, Gulbranson EL, Limarino CO, Fraiser ML, Koch ZJ, Ciccioli PL, Dineen AA (2012) Glacial paradoxes during the late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Res 22:1–19

    Article  Google Scholar 

  • Kadima E, Delvaux D, Sebagenzi SN, Tack L, Kabeya SM (2011) Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data. Basin Res 23:499–527

    Article  Google Scholar 

  • Kampunzu AB, Bonhomme MG, Kanika M (1998) Geochronology of volcanic rocks and evolution of the Cenozoic Western Branch of the East African Rift System. J Afr Earth Sci 26:441–461

    Article  Google Scholar 

  • Karl M, Glasmacher UA, Kollenz S, Franco-Magalhaes AOB, Stockli DF, Hackspacher PC (2013) Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U–Th–Sm)/He and fission-track data. Tectonophysics 604:224–244

    Article  Google Scholar 

  • Karner GD, Byamungu BR, Ebinger CJ, Kampunzu AB, Mukasa RK, Nyakaana J, Rubondo ENT, Upcott NM (2000) Distribution of crustal extension and regional basin architecture of the Albertine rift system, East Africa. Mar Petrol Geol 17:1131–1150

    Article  Google Scholar 

  • Kaufmann G, Romanov D (2012) Landscape evolution and glaciation of the Rwenzori Mountains, Uganda: insights from numerical modeling. Geomorphology 138:263–275. doi:10.1016/j.geomorph.2011.09.011

    Article  Google Scholar 

  • Ketcham RA (2005) Forward and Inverse Modelling of low-temperature thermochronometry data. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations and applications, vol 58. Reviews in Mineralogy and Geochemistry, pp 275–314

  • Ketcham RA (2013) HeFTy version 1.8.0, manual

  • Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007) Improved modeling of fission-track annealing in apatite. Am Mineral 92:799–810

    Article  Google Scholar 

  • Ketcham RA, Donelick RA, Balestrieri ML, Zattin M (2009) Reproducibility of apatite fission-track length data and thermal history reconstruction. Earth Planet Sci Lett 284:504–515

    Article  Google Scholar 

  • Koehn D, Lindenfeld M, Rümpker G, Aanyu K, Haines S, Passchier C (2010) Active transsection faults in rift transfer zones: evidence for rotating stress fields in the East African Rift and implications for crustal fragmentation processes. Int J Earth Sci 99:1633–1642

    Article  Google Scholar 

  • Kusznir NJ, Ziegler PA (1992) The mechanics of continental extension and sedimentary basin formation: a simple-shear/pure-shear flexural cantilever model. Tectonophysics 215:117–131

    Article  Google Scholar 

  • Laslett GM, Gleadow AJW, Duddy IR (1984) The relationship between fission track length and track density distributions. Nucl Tracks Radiat Meas 9:29–38

    Article  Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Lepersonne J (1974) Carte Géologique du Zaire, Èchelle 1:2,000,000—Republique du Zaire, Commissariate d᾽Etat aux Mines, Service Géologique

  • Link K, Koehn D, Barth MG, Tiberindwa JV, Barifaijo E, Aanyu K, Foley SF (2010) Continuous cratonic crust between the Congo and Tanzania blocks in western Uganda. Int J Earth Sci 99:1559–1573. doi:10.1007/s00531-010-0548-8

    Article  Google Scholar 

  • Lisker F, Ventura B, Glasmacher UA (2009) Apatite thermochronology in modern geology. Geol Soc Lond Spec Publ 324:1–23

    Article  Google Scholar 

  • Livingstone DA (1967) Vegetation of the Ruwenzori Mountains in Equatorial Africa. Ecol Monogr 37:25–52

    Article  Google Scholar 

  • Macheyeki AS, Delvaux D, De Batist M, Mruma A (2008) Fault kinematics and tectonic stress in the seismically active Manyara-Dodoma Rift segment in Central Tanzania—implications for the East African Rift. J Afr Earth Sci 51:163–188

    Article  Google Scholar 

  • MacPhee D (2006) Exhumation, Rift-flank uplift, and Thermal Evolution of the Rwenzori Mountains Determined by Combined (U–Th)/He and U–Pb thermochronometry. Master thesis, Massachusetts Institute of Technology

  • Mbede EL (2001) Tectonic setting and uplift analysis of the Pangani Rift Basin in Northern Tanzania using apatite fission track thermochronology. Tanz J Sci 27A Abstr Vol Spec Issue: 23–36

  • McConnell RB (1959) Outline of the geology of the Ruwenzori Mountains, a preliminary account of the results of the British Ruwenzori expedition, 1951–1952. Overseas Geol Miner Resour 7:245–268

    Google Scholar 

  • Michot F (1938) Etude pétrographique et géologique du Ruwenzori septentrional. Mém. Inst Rroy Ccolon Belg Sect Sc Nat et Med 8:66–271

    Google Scholar 

  • Morley CK (1999) Tectonic evolution of the East African Rift System and the modifying influence of magmatism: a review. Acta Vulcanol 11:1–19

    Google Scholar 

  • Noble WP, Foster DA, Gleadow AJW (1997) The post-Pan-African thermal and extensional history of the crystalline basement rocks in eastern Tanzania. Tectonophysics 275:331–350

    Article  Google Scholar 

  • Ollier CD, Pain CF (2000) The origin of mountains. Routledge, London

    Google Scholar 

  • Osmaston HA, Harrison SP (2005) The late Quaternary glaciation of Africa: a regional synthesis. Quatern Int 138:32–54

    Article  Google Scholar 

  • Ovington T, Burdon P (2009) Upper Pliocene Fluvio-Deltaic Reservoirs of the Victoria Nile/Butiaba Play, Alpert Rift, Western Uganda. PESGB Conference September 2009, London

  • Petters SW (1991) Regional Geology of Africa. Lecture notes in Earth Sciences series, 40. Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong

  • Pickford M, Senut B, Hadoto D (1993) Geology and paleobiology of the Albertine Rift valley in Uganda-Zaire, vol I, Geology Occasional Publications, vol 24, Centre International pour la Formation et les Echanges Geologiques, Orléans

  • Pik R, Marty B, Carignan J, Lavé J (2003) Stability of the Upper Nile drainage network (Ethiopia) deduced from (U–Th)/He thermochronometry: implications for uplift and erosion for the Afar plume dome. Earth Planet Sci Lett 215:73–88

    Article  Google Scholar 

  • Pik R, Marty B, Carignan J, Yirgu G, Ayalew T (2008) Timing of East African Rift development in southern Ethiopia: implication for mantle plume activity and evolution of topography. Geology 36:167–170

    Article  Google Scholar 

  • Reiners PW (2005) Zircon (U–Th)/He Thermochronometry. In: Reiners PW, Ehlers TA (eds) Thermochronology, vol. 58. Reviews in Mineralogy and Geochemistry, pp. 151–176

  • Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466

    Article  Google Scholar 

  • Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet Sci Lett 188:413–420

    Article  Google Scholar 

  • Reiners PW, Nicolescu S (2006) Measurement of parent nuclides for (U–Th)/He chronometry by solution sector ICP-MS, ARHDL report 1, University of Arizona

  • Reiners PW, Shuster DL (2009) Thermochronology and landscape evolution. Phys Today 62:31–36

    Article  Google Scholar 

  • Reiners PW, Farley KA, Hickes HJ (2002) He diffusion and (U–Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics 349:247–308

    Article  Google Scholar 

  • Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887

    Article  Google Scholar 

  • Reiners PW, Ehlers TA, Zeitler PK (2005) Past, present, and future of thermochronology. In: Reiners PW, Ehlers TA (Eds) Thermochronology, vol 58. Reviews in Mineralogy and Geochemistry, pp 151–176

  • Ring U (2014) The East African Rift System. Austrian J Earth Sci 107:132–146

    Google Scholar 

  • Roberts AM, Yielding G (1991) Deformation around basin-margin faults in the North Sea/mid Norway rift. In: Roberts AM, Yielding G, Freeman B (eds) The Geometry of Normal Faults, vol 56. Special Publications of the Geological Society of London, London, pp 61–78

    Google Scholar 

  • Roberts EM, Stevens NJ, O’Connor PM, Dirks PHGM, Gottfried MD, Clyde WC, Armstrong RA, Kemp AIS, Hemming S (2012) Initiation of the western branch of the East African Rift coeval with the eastern branch. Nat Geosci 5:289–294

    Article  Google Scholar 

  • Roller S, Hornung J, Hinderer M, Ssemmanda I (2010) Middle Miocene to Pleistocene sedimentary record of rift evolution in the southern Albertine Rift (Uganda). Int J Earth Sci 99:1643–1661. doi:10.1007/s00531-010-0560-z

    Article  Google Scholar 

  • Roller S, Wittmann H, Kastowski M, Hinderer M (2012) Erosion of the Rwenzori Mountains, East African Rift, from in situ-produced cosmogenic 10 Be. J Geophys Res 117:F03003

    Article  Google Scholar 

  • Rowley DB, Sahagian D (1986) Depth-dependent stretching: a different approach. Geology 14:32–35

    Article  Google Scholar 

  • Royden L, Keen CE (1980) Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth Planet Sci Lett 51:343–361

    Article  Google Scholar 

  • Sachau T, Koehn D (2010) Faulting the lithosphere during extension and related rift-flank uplift, a numerical study. Int J Earth Sci 99:1619–1632. doi:10.1007/s00531-010-0513-6

    Article  Google Scholar 

  • Schlueter T (1997) Geology of East Africa. Gebr Bortntraeger, Berlin, Stuttgart

    Google Scholar 

  • Schlueter T, Picho-Olarker G, Kreuser T (1993) A review of some neglected Karoo grabens of Uganda. J Afr Earth Sci 17:415–428

    Article  Google Scholar 

  • Shuster DL, Farley KA (2009) The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochim Cosmochim Acta 73:183–196

    Article  Google Scholar 

  • Shuster DL, Flowers RM, Farley KA (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet Sci Lett 249:148–161

    Article  Google Scholar 

  • Spiegel C, Kohn BP, Belton DX, Gleadow AJW (2004) Integrating apatite fission track and (U–Th)/He data: the thermal evolution of rift-valley flanks in central Kenya. Abstract book, International fission-track conference 2004, Amsterdam

  • Spiegel C, Kohn BP, Belton DX, Gleadow AJW (2007) Morphotectonic evolution of the central Kenya rift flanks: implications for late Cenozoic environmental change in East Africa. Geology 35:427–430

    Article  Google Scholar 

  • Spiegel C, Kohn BP, Belton DX, Berner Z, Gleadow AJW (2009) Apatite (U–Th–Sm)/He thermochronology of rapidly cooled samples: the effect of He implantation. Earth Planet Sci Lett 285:105–114

    Article  Google Scholar 

  • Tack L, Wingate MTD, De Waele B, Meert J, Belousova E, Griffin B, Tahon A, Fernandez-Alonso M (2010) The 1375 Ma “Kibaran event” in Central Africa: prominent emplacement of bimodal magmatism under extensional regime. Precambrian Res 180:63–84

    Article  Google Scholar 

  • Tanner PWG (1971) The Stanley Volcanics formation of Ruwenzori, Uganda. Fifteenth annual report of the Research Institute of African Geology, University of Leeds

  • Thomson SN, Brandon MT, Tomkin JH, Reiners PW, Vásquez C, Wilson NJ (2010) Glaciation as a destructive and constructive control on mountain building. Nature 147:313–317

    Article  Google Scholar 

  • Tugume FA, Nyblade AA (2009) The depth distribution of seismicity at the northern end of the Rwenzori Mountains; implications for heat flow in the western branch of the East African Rift system in Uganda. S Afr J Geol 112:261–276

    Article  Google Scholar 

  • Upcott NM, Mukasa RK, Ebinger CJ (1996) Along-axis segmentation and isostasy in the Western rift. East Afr J Geophys Res 101(B2):3247–3268

    Article  Google Scholar 

  • Ring U (2008) Extreme uplift of the Rwenzori Mountains in the East African Rift, Uganda: structural framework and possible role of glaciations. Tectonics 27:TC4018. doi:10.1029/2007TC002176

    Article  Google Scholar 

  • van der Beek P, Cloetingh S, Andriessen P (1994) Mechanisms of extensional basin formation and vertical motions at rift flanks: constraints from tectonic modelling and fission-track thermochronology. Earth Planet Sci Lett 121:417–433

    Article  Google Scholar 

  • van der Beek P, Mbede E, Andriessen P, Delvaux D (1998) Denudation history of the Malawi and Rukawa Rift flanks (East African Rift System) from apatite fission track thermochronology. J Afr Earth Sci 26:363–385

    Article  Google Scholar 

  • Vermeesch P (2009) Radial Plotter: a Java application for fission track, luminescence and other radial plots. Radiat Meas 44:409–410

    Article  Google Scholar 

  • Vermeesch P, Seward D, Latkoczy C, Wipf M, Guenther D, Baur H (2007) Alpha-emitting mineral inclusions in apatite, their effect on (U–Th)/He ages, and how to reduce it. Geochim Cosmochim Acta 71:1737–1746

    Article  Google Scholar 

  • Wagner GA (1972) Spaltspurenalter von Mineralen und natürlichen Gläsern: eine Übersicht. Fortschr Miner 49:114–145

    Google Scholar 

  • Wagner GA, Van den haute P (1992) Fission-track dating. Enke, Stuttgart

    Book  Google Scholar 

  • Wagner M, Altherr R, Van den haute P (1992) Apatite fission-track analysis of Kenyan basement rocks: constraints on the thermotectonic evolution of the Kenya dome. A reconnaissance study. Tectonophysics 204:93–110

    Article  Google Scholar 

  • Whittow JB (1966) The landforms of the Central Ruwenzori. East Afr Geogr J 132:32–42

    Google Scholar 

  • Wolf RA, Farley KA, Kass DM (1998) Modeling of the temperature sensitivity of the apatite (U–Th/He) thermochronometer. Chem Geol 148:105–114

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the DFG (Deutsche Forschungsgemeinschaft) through the research unit RiftLink (DFG research unit 703, GL 182/9-2). Further funding was provided by the DAAD (Deutscher Akademischer Austausch Dienst) through a short-term research stay grant. Field work was supported by the Ruwenzori State University in Butembo. We particularly thank Dr. Meni Malikwisha and Bin V. Mutete, as well as Celestin Kasereka Mahinda from Goma Volcano Observatory. We also gratefully acknowledge the support given by the ICCN (Institut Congolais pour la Conservation de la Nature), the CEEC (Centre of Evaluation, Expertise and Certification) and the Ministry of Mining. We express our thanks to the governor of North-Kivu for supporting us during our expedition. We also thank the officials from Bunia and the Local Chiefs of the entire region for their support. Acknowledgement is also given to the RiftLink research group for thorough discussions, to Alexis Ault and Benjamin Emmel for very helpful reviews, to the editor, Dieter Mertz, and to Anna Ksienzyk for their support. We thank Peter W. Reiners and Uttam Chowdhury for analytical assistance and valuable discussions. ASTER GDEM, product of METI & NASA, and OneGeology is thanked for providing their material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. U. Bauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, F.U., Glasmacher, U.A., Ring, U. et al. Long-term cooling history of the Albertine Rift: new evidence from the western rift shoulder, D.R. Congo. Int J Earth Sci (Geol Rundsch) 105, 1707–1728 (2016). https://doi.org/10.1007/s00531-015-1146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1146-6

Keywords

Navigation