Skip to main content

Advertisement

Log in

Morphostructural analysis and Cenozoic evolution of Elephant Island, Southern Scotia Arc, Antarctica

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Elephant Island, located in the vicinity of the present-day active boundary of the South Shetland Block and the Antarctic and Scotia plates, is a region of particular interest for understanding the past and present geodynamic evolution of the southern Scotia Arc. Lineament from different data sources, field-measured fractures and geomorphological evidences have been analysed in this context. The lineaments extracted from aerial photographs (1,624), from a DEM (348) and from RADARSAT-2 satellite data (1,365) indicate four dominant lineament sets with NE–SW, NW–SE, N–S and W–E strikes. All data sources identified similar lineament families, but differences in the frequency distributions and subsequently on the dominant orientations were observed. The measurements direct of fractures were obtained from 23 sites in the field at which 278 planes were measured. Fracture planes indicate main modes trending in the NNE–SSW and NNW–SSE directions and a secondary mode in the E–W. The major trends of the fracture measurements and the lineaments display a good correlation in the E–W direction. However, there is an angular variation in the azimuth values of the NNE–SSE and NNW–SSE fractures with respect to the N–S, NE–SW and NW–SE orientations of the lineaments of approximately 20°. This trend deviation may be due to the fact that mapped lineaments are composed of small fracture sets that may be related to shear fractures that cannot be distinguished at the aerial photograph or radar satellite data scales. Submerged sea-floor morphological feature orientations match the studied morphostructures on the island and the main tectonic structures in this part of the Scotia Arc. A linkage of the main lineament families to the tectonic stages from the Oligocene to the present has been proposed, taking into account the information of the orientation and sense of movement of the fractures and stresses in the Elephant Island region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Admiralty Nautical Chart (2008) Antarctica South Shetland Islands and Approaches, 1:200,000. Admiralty Nautical Chart 449. London

  • Aldaya F, Maldonado A (1996) Tectonics of the triple junction at the southern end of the Shackleton Fracture Zone (Antarctic Peninsula). Geol Mar Lett 16:279–286

    Article  Google Scholar 

  • Angelier J, Mechler P (1977) Sur une méthode graphique de recherche des contraintres principales également utilisable en tectonique et en séismologie: la méthode des diédres droits. Bull Soc Geol Fr 7(19):1309–1331

    Article  Google Scholar 

  • Array Systems Computing Inc. (2013) NEST version 5.0.5. Toronto Canada under ESA Contract number 20698/07/I-LG

  • Barker PF (1982) The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: ridge crest–trench interactions. J Geol Soc London 139(6):787–801

    Article  Google Scholar 

  • Barker PF (2001) Scotia Sea regional tectonics evolution: implications for mantle flow and palaeocirculation. Earth Sci Rev 55:1–39

    Article  Google Scholar 

  • Barker PF, Dalziel IWD, Storey BC (1991) Tectonic development of the Scotia Arc region. In: Tingey RJ (ed) Antarctic geology. Oxford University Press, Oxford, pp 215–248

    Google Scholar 

  • BAS (1985) Tectonic map of the Scotia Arc. 1:3,000,000. BAS Miscellaneous Series. British Antarctic Survey, Cambridge

  • Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117

    Article  Google Scholar 

  • Boyer R, McQueen J (1964) Comparison of mapped rocks fractures and airphoto linear features. Photogramm Eng Remote Sens 30:630–635

    Google Scholar 

  • Braun OPG (1982) A structural analysis of Brazil, based on the study of major lineaments derived from remote sensing imagery. Photogrammetria 37:77–108. doi:10.1016/0031-8663(82)90021-7

    Article  Google Scholar 

  • Carne RC, Little TA (2012) Geometry and scale of fault segmentation and deformational bulging along an active oblique-slip fault (Wairarapa fault, New Zealand). Geol Soc Am Bull 124:1365–1381

    Article  Google Scholar 

  • Catalán M, Galindo-Zaldivar J, Davila JM, Martos YM, Maldonado A, Gambôa L, Schreider AA (2013) Initial stages of oceanic spreading in the Bransfield Rift from magnetic and gravity data analysis. Tectonophysics 585:102–112

    Article  Google Scholar 

  • CGE-UAM-UFRJ (2005) Topographic map of Elephant Island, Antarctica. E. 1:50,000. Centro Geográfico del Ejército, Madrid

  • Civile D, Lodolo E, Vuan A, Loreto MF (2012) Tectonics of the Scotia–Antarctica plate boundary constrained from seismic and seismological data. Tectonophysics 550–553:17–34

    Article  Google Scholar 

  • Cortés AL, Maestro A, Soriano MA, Casas AM (1998) Lineaments and fracturing in the Neogene rocks of the Almazán Basin, northern Spain. Geol Mag 135:255–268

    Article  Google Scholar 

  • Cortés AL, Soriano MA, Maestro A, Casas AM (2003) The role of tectonic inheritance in the development of recent fracture systems, Duero Basin, Spain. Int J Remote Sens 24(4325):4345. doi:10.1080/0143116031000068204

    Google Scholar 

  • Cotton CA (1950) Tectonic scarps and fault valleys. Bull Geol Soc Am 61(7):717–758

  • Dalziel IWD (1984) Tectonic evolution of a forearc terraine, southern Scotia Ridge, Antarctica. Geol Soc Am, Special paper 200, 32 pp

  • Dalziel IWD, Lawver LA, Pearce JA, Barker PF, Hastie AR, Barfod DN, Schenke HW, Davis MB (2013) A potential barrier to deep Antarctic circumpolar flow until the late Miocene? Geology 41(9):947–950. doi:10.1130/G34352.1

    Article  Google Scholar 

  • Dietrich R, Dach R, Engelhardt G, Ihde J, Korth W, Kutterer H, Lindner K, Mayer M, Menge F, Miller H, Müller C, Niemeier W, Perlt J, Pohl M, Salbach H, Schenke HW, Schöne T, Seeber G, Veit A, Völksen C (2001) ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica—an analysis based on different individual solutions. J Geodesy 74:756–766

    Article  Google Scholar 

  • Dietrich R, Rülke A, Ihde J, Lindner K, Miller H, Niemeier W, Schenke HW, Seeber G (2004) Plate kinematics and deformation status of the Antarctic Peninsula based on GPS. Glob Planet Change 42:313–321

    Article  Google Scholar 

  • Eagles G (2004) Tectonic evolution of the Antarctic–Phoenix plate system since 15 Ma. Earth Planet Sci Lett 217(1–2):97–109

    Article  Google Scholar 

  • Eagles G, Livermore RA, Fairhead JD, Morris P (2005) Tectonic evolution of the west Scotia Sea. J Geophys Res 110:B2. doi:10.1029/2004JB003154

  • Eagles G, Larter RD, Gohl K, Vaughan APM (2009) West Antarctic Rift system in the Antarctic Peninsula. Geophys Res Lett 36. doi:10.1029/2009GL040721

  • ESRI-Environmental Systems Research Institute Inc. (2012) ArcGis 10.1 Redlands, California

  • Etchecopar A, Vasseur G, Daignieres M (1981) An inverse problem in microtectonics for the determination of stress tensors from fault population analysis. J Struct Geol 3:51–65

    Article  Google Scholar 

  • Ferrandini J, Cornée JJ, Simon B (1993) Étude linéamentaire sur images Landsat 2 du Haut Atlas occidental (Maroc): conséquences. Geodin Acta 6:161–173

    Google Scholar 

  • Galindo-Zaldívar J, Jabaloy A, Maldonado A, Sanz de Galdeano C (1996) Continental fragmentation along the South Scotia Ridge transcurrent plate boundary (Antarctic Peninsula). Tectonophysics 259:275–301

    Article  Google Scholar 

  • Galindo-Zaldívar J, Maestro A, López-Martínez J, Sanz de Galdeano C (2006) Elephant Island recent tectonics in the framework of the Scotia–Antarctic–South Shetland block triple juction (NE Antarctic Peninsula). In: Fütterer DK, Damaske D, Kleinschmidt G, Miller H, Tessensohn F (eds) Antarctica: contributions to global earth sciences. Springer, Berlin, pp 271–276

    Chapter  Google Scholar 

  • Ganas A, Pavlides S, Karastathis V (2005) DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates. Geomorphology 65(3–4):301–319

    Article  Google Scholar 

  • Geletti R, Lodolo E, Schreider AA, Polonia A (2005) Seismic structure and tectonics of the Shackleton fracture zone (Drake Passage, Scotia Sea). Mar Geophys Res 28:1–11

    Google Scholar 

  • Ghosh N, Chattopadhyay A (2008) The initiation and linkage of surface fractures above a buried strike-slip fault: an experimental approach. J Earth Syst Sci 117(1):23–32

    Article  Google Scholar 

  • González-Casado JM, Giner JL, López-Martínez J (2000) Bransfield Basin, Antarctic Peninsula: not a normal backarc basin. Geology 28:1043–1046

    Article  Google Scholar 

  • Grunow AM, Dalziel IWD, Harrison TM, Heizler MT (1992) Structural geology and geochronology of subduction complexes along the margin of Gondwanaland: new data from the Antarctic Peninsula and southernmost Andes. Geol Soc Am Bull 104:1497–1514

    Article  Google Scholar 

  • Hall BL (2010) Holocene relative sea-level changes and ice fluctuations in the South Shetland Islands. Glob Planet Change 74:15–26

    Article  Google Scholar 

  • Heddi M, Eastaff DJ, Petch J (1999) Relationships between tectonic and geomorphological linear features in the Guadix-Baza basin, Southern Spain. Earth Surf Proc Landf 24:931–942

    Article  Google Scholar 

  • Hobbs WH (1912) Earth features and their meaning: an introduction to geology for the student and the general reader. Macmillan, New York, p 609

    Google Scholar 

  • Jordan G (2003a) Application of digital terrain modeling and GIS methods for the morphotectonic investigation of the Kali basin. Hungary Z Geomorphol 47(2):145–169

    Google Scholar 

  • Jordan G (2003b) Morphometric analysis and tectonic interpretation of digital terrain data: a case study. Earth Surf Process Landf 28(8):807–822

    Article  Google Scholar 

  • Jutz SL, Chorowicz J (1993) Geological mapping and detection of oblique extensional structures in the Kenyan Rift Valley with SPOT/Landsat-TM data merge. Int J Remote Sens 14:1677–1688

    Article  Google Scholar 

  • Kaneko S (1967) Structural geography. Kokin-shoin, Tokyo, p 192

    Google Scholar 

  • Kim Y, Jin YK, Nam SH (1997) Crustal structure of the Shackleton Fracture Zone in the southern Drake Passage. In: Ricci CA (ed) The Antarctic Region: Geological Evolution and Processes. Siena, Italy, pp 661–667

  • Klepeis KA, Lawver LA (1996) Tectonics of the Antarctic–Scotia plate boundary near Elephant and Clarence Islands, West Antarctica. J Geophys Res 101:20211–20231

    Article  Google Scholar 

  • Koike K, Nagano S, Kawaba K (1998) Construction and analysis of interpreted fracture planes through combination of satellite-image derived lineaments and digital elevation model data. Comput Geosci 24(6):573–583

    Article  Google Scholar 

  • Larter RD, Barker PF (1991) Effects of ridge crest–trench interaction on Antarctic–Phoenix spreading: forces on a young subducting plate. J Geophys Res 96:19583–19607

    Article  Google Scholar 

  • Lawver LA, Villinger H (1989) North Bransfield Basin: R/V Polar Duke cruise PD VI-88. Antarct J 24:117–120

    Google Scholar 

  • Lawver LA, Sloan BJ, Barker DHN, Ghidella ME, Vonherzen RF, Keller RA, Klinkhamer GP, Chin CS (1996) Distributed active extension in Bransfield Basin, Antarctic Peninsula: evidence from multibeam bathymetry. Geol Soc Am Today 6(11):1–6

    Google Scholar 

  • Livermore R, McAddo D, Marks K (1994) Scotia Sea tectonics from high-resolution satellite gravity. Earth Planet Sci Lett 123:255–268

  • Livermore R, Balanyá JC, Maldonado A, Martínez JM, Rodríguez-Fernández J, Sanz de Galdeano C, Galindo-Zaldívar J, Jabaloy A, Barnolas A, Somoza L, Hernández-Molina J, Surinach E, Viseras C (2000) Autopsy on a dead spreading center: the phoenix ridge, Drake Passage, Antarctica. Geology 28:607–610

    Article  Google Scholar 

  • Livermore RA, Nankivell A, Eagles G, Morris P (2005) Paleogene opening of Drake Passage. Earth Planet Sci Lett 236:459–470

    Article  Google Scholar 

  • Lodolo E, Coren F, Schreider AA, Ceccone G (1997) Geophysical evidence of a relict oceanic crust in the South-western Scotia sea. Mar Geophys Res 19(5):439–450

    Article  Google Scholar 

  • Lodolo E, Civile D, Vuan A, Tassone A, Geletti R (2010) The Scotia-Antarctica plate boundary from 35°W to 45°W. Earth Planet Sci Lett 93:200–215

    Article  Google Scholar 

  • López-Martínez J, Hathway B, Lomas S, Martínez de Pisón E, Arche A (1996) Structural geomorphology and geological setting. In: López-Martínez J, Thomson MRA, Thomson JW (eds) Supplementary text of geomorphological map of Byers Peninsula, BAS Geomap series 5-A:9-14. British Antarctic Survey, Cambridge

    Google Scholar 

  • López-Martínez J, Trouw RAJ, Galindo-Zaldívar J, Maestro A, Simoes LSA, Medeiros FF, Trouw CC (2006) Tectonics and geomorphology of Elephant Island, South Shetland Islands. In: Fütterer DK, Damaske D, Kleinschmidt G, Miller H, Tessensohn F (eds) Antarctica: contributions to global earth sciences. Springer, Berlin, pp 277–281

    Chapter  Google Scholar 

  • Maldonado A, Larter RD, Aldaya F (1994) Forearc tectonic evolution of the South Shetland Margin, Antarctic Peninsula. Tectonics 13:1345–1370

    Article  Google Scholar 

  • Maldonado A, Balanyá JC, Barnolas A, Galindo-Zaldívar J, Hernández J, Jabaloy A, Livermore RA, Martínez JM, Rodríguez-Fernández J, Sanz de Galdeano C, Somoza L, Surinach E, Viseras C (2000) Tectonics of an extinct ridge transform intersection, Drake Passage (Antarctica). Mar Geophys Res 21:43–68

    Article  Google Scholar 

  • Mandl G (1988) Mechanics of tectonic faulting: models and basic concepts. Dev Struct Geol 1. Elsevier, Amsterdam

  • Mink S, López-Martínez J, Maestro A, Garrote J, Ortega JA, Serrano E, Durán JJ, Schmid T (2014) Insights on deglaciation of the largest ice-free area in the South Shetland Islands (Antarctica) from quantitative analysis of the drainage system. Geomorphology. doi:10.1016/j.geomorph.2014.03.028

    Google Scholar 

  • Naylor MA, Mandl G, Sijpesteijn CHK (1986) Fault geometries in basement-induced wrench faulting under different initial stress states. J Struct Geol 8:737–752

    Article  Google Scholar 

  • O’Leary DW, Freidman JD, Pohn HA (1976) Lineament, linear, lineation: some proposed new definitions for old terms. Geol Soc Am Bull 87:1463–1469

    Article  Google Scholar 

  • Panizza M, Castaldini D, Bollettinari G, Carton A, Mantovani F (1987) Neotectonic research in applied geomorphological studies. Z Geomorphol 63:173–211

    Google Scholar 

  • Pegoraro O (1972) Application de la microtectonique à un étude de neotectonique. Le golfe Maliaque (Grèce centrale). Thèse lllème cycle, U.S.T.L. Montpellier, 41 pp

  • Pelayo A, Wiens D (1989) Seismotectonics and relative plate motions in the Scotia Sea region. J Gephys Res 96:7293–7320

    Article  Google Scholar 

  • Rahiman TIH, Pettinga JR (2013) Analysis of lineaments and their relationship to neogene fracturing, SE Viti Levu. Fiji Geol Soc Am Bull 120(11–12):1544–1555. doi:10.1130/B26264.1

    Google Scholar 

  • Riedel W (1929) Zur Mechanik geologischer Brucherscheinungen. Zbl Mineral Geol Palaeont B1929:354–368

  • Robertson Maurice SD, Wiens DA, Shore PJ, Vera E, Dorman LM (2003) Seismicity and tectonics of the South Shetland Islands and Bransfield Strait from a regional broadband seismograph deployment. J Geophys Res 108(B10):2461. doi:10.1029/2003JB002416

    Article  Google Scholar 

  • Roy DW, Schmitt L, Woussen G, DuBerger R (1993) Lineaments from airborne SAR images and the 1988 Saguenay earthquake, Quebec, Canada. Photogramm Eng Remote Sens 59:1299–1305

    Google Scholar 

  • Sabins FF (1987) Remote sensing. principles and interpretation. W. H. Freeman, New York

    Google Scholar 

  • Schmid T, López-Martínez J, Koch M, Maestro A, Serrano E, Linés C (2012) Geomorphological mapping in the Antarctic Peninsula region applying single and multipolarization RADARSAT-2 data. Can J Remote Sens 38:367–382

    Article  Google Scholar 

  • Schreurs G, Colletta B (1998) Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental transpressional and transtensional tectonics, Special Publication 135. Geological Society Publishing House, Bath, pp 59–79

    Google Scholar 

  • Simón-Gómez JL (1986) Analysis of gradual change in stress regime (example from the eastern Iberian Chain, Spain). Tectonophysics 124:37–53

    Article  Google Scholar 

  • Smalley R, Dalziel IWD, Bevis MG, Kendrick E, Stamps DS, King EC, Taylor FW, Lauría E, Zakrajsek A, Parra H (2007) Scotia arc kinematics from GPS geodesy. Geophys Res Lett 34:L21308. doi:10.1029/2007GL031699

    Article  Google Scholar 

  • Smellie JL, Clarkson P (1975) Evidence for pre-jurassic subduction in Western Antarctica. Nature 258:701–702

    Article  Google Scholar 

  • Szynkaruk E, Graduno-Monroy VH, Bocco G (2004) Active fault systems and tectono-topography configuration of the central trans-mexican volcanic belt. Geomorphology 61(1–2):111–126

    Article  Google Scholar 

  • Tanner PWG, Pankhurst RJ, Hyden G (1982) Radiometric evidence for the age of the subduction complex in the South Orkney and the South Shetland islands, West Antarctica. J Geol Soc London 139:683–690

    Article  Google Scholar 

  • Taylor FW, Bevis MG, Dalziel IWD, Smalley R, Frohlich C, Kendrick E, Foster J, Phillips D, Gudipati K (2008) Kinematics and segmentation of the South Shetland Islands-Bransfield basin system, northern Antarctic Peninsula. Geochem Geophy Geosy 9(4):Q04035. doi:10.1029/2007GC001873

    Article  Google Scholar 

  • Tchalenko JS (1970) Similarities between shear zones of different magnitudes. Geol Soc Am Bull 81:1625–1640

    Article  Google Scholar 

  • Thomas C, Livermore R, Pollitz F (2003) Motion of the Scotia Sea plates. Geophys J Int 155:789–804

    Article  Google Scholar 

  • Trouw RAJ, Simöes LSA, Valladares C (1998a) Metamorphic evolution of a subduction complex, South Shetland Islands, Antarctica. J Metamorph Geol 16:475–490

    Article  Google Scholar 

  • Trouw RAJ, Simöes LSA, Valladares C (1998b) Variation in mineral chemical composition across a subduction complex with sanbagawa-type metamorphism, South Shetland Islands, Antarctica. Pesqui Antarct Bras 3:133–169

    Google Scholar 

  • Trouw RAJ, Passchier CW, Valeriano CM, Simôes LSA, Paciullo FVP, Ribeiro A (2000) Deformational evolution of a cretaceous subduction complex: Elephant Island, South Shetland Islands, Antarctica. Tectonophysics 319:93–110

    Article  Google Scholar 

  • USGS (2013) Database of National Earthquake Information Center [online].http://www.neic.cr.usgs.gov/ [visited 14-03-2013]

  • Wadge G, Dixon TH (1982) A geological interpretation of Seasat-SAR imagery of Jamaica. J Geol 92:561–581

    Article  Google Scholar 

  • Wise DU, McCrory TA (1982) A new method of fracture analysis: azimuth versus traverse distance plots. Geol Soc Am Bull 93:889–897

    Article  Google Scholar 

  • Wise DU, Funiciello R, Parotto M, Salvini F (1985) Topographic lineament swarms; clues to their origin from domain analysis of Italy. Geol Soc Am Bull 96:952–967. doi:10.1130/0016-7606

    Article  Google Scholar 

  • Withjack MO, Olson J, Peterson E (1990) Experimental models of extensional forced folds. Am Assoc Pet Geol Bull 74:1038–1054

    Google Scholar 

Download references

Acknowledgments

This work was funded by the projects CTM2011-26372, CTM2011-30241-CO2-02 and CTM2011-13902-E of the Spanish R&D National Plan. RADARSAT-2 Science and Operational Applications Research Program (SOAR), Canada provided satellite data through the SOAR-1376 and SOAR-5169 projects granted to the Universidad Autónoma de Madrid, Spain. Topographic and geodetic work was conducted in collaboration with the Centro Geográfico del Ejército, Spain, which we thank. The field campaign was performed in collaboration with the scientists of the Universidade Federal de Rio de Janeiro. In addition, we thank the Brazilian Antarctic Programme for their support. The authors thank the constructive comments of two referees and the editor that have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mink, S., Maestro, A., López-Martínez, J. et al. Morphostructural analysis and Cenozoic evolution of Elephant Island, Southern Scotia Arc, Antarctica. Int J Earth Sci (Geol Rundsch) 104, 833–851 (2015). https://doi.org/10.1007/s00531-014-1099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1099-1

Keywords

Navigation