Skip to main content
Log in

Surficial geology indicates early Holocene faulting and seismicity, central Sweden

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In Sweden, knowledge of the location and timing of glacially induced faulting and seismicity is critical to effective engineering of a long-term nuclear disposal facility. To improve understanding and modeling of the complex ice-induced and tectonic stresses associated with glacially induced faulting, field studies detailing the location and timing of movement of such structures are required. Although the fault has not been confirmed in the bedrock, multi-proxy surficial geologic evidence indicates that the recently discovered scarp in Bollnäs is such a structure. Machine-excavated trenches across the scarp reveal landsliding down the scarp and, in one location, faulted and vertically offset fine-grained glacial sediments. The presence of water-escape structures in trenches excavated on a topographic high strongly suggests a co-seismic origin derived from earthquake magnitudes >5.5. Numerous landslides in till exist in the region as well. Four slopes with landslides were examined in detail, and the factors of safety for these slopes indicate stable conditions and suggest a seismic trigger. Basal radiocarbon dates from peat bogs located stratigraphically above the landslides provide minimum limiting ages for the co-seismic landslides. The oldest date indicates sliding prior to 10,180 calendar years before the present. The proposed Bollnäs Fault is 400 km south of the so called Lapland Fault Province. To date, it is the southernmost confirmed glacially induced fault in Sweden. The results of this study are consistent with existing modeling results that indicate fault instability in this region of central Sweden following deglaciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albrecht L, Kübler L (2011) Bedrock Map 15G Bollnäs, scale 1:250 000. Geological Survey of Sweden, K312

  • Ambraseys NN (1988) Engineering seismology. Earthq Eng Struct Dyn 17:1–105

    Article  Google Scholar 

  • Bäckblom G, Stanfors R (1989) Interdisciplinary study of post-glacial faulting in the Lansjärv area northern Sweden 1986–1988. SKB Technical Report 89–31

  • Berglund M (2005) The Holocene shore displacement of Gästrikland, eastern Sweden: a contribution to the knowledge of Scandinavian glacio-isostatic uplift. J Quat Sci 20:519–531

    Article  Google Scholar 

  • Björck S (1995) A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quatern Int 27:19–40

    Article  Google Scholar 

  • Bödvarsson R, Lund B (2003) The SIL seismological data acquisition system -as operated in Iceland and in Sweden. In: Takanami T, Kitagawa G (eds) Methods and applications of signal processing in seismic network operations. Lecture Notes in Earth Sciences 98, Springer, Berlin

  • Boggs S (1995) Principles of Sedimentology and Stratigraphy. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Bungum H, Olesen O, Pascal C, Gibbons S, Linidholm C, Vestøl O (2010) To what extent is the present seismicity of Norway driven by post-glacial rebound? J Geolog Soc 167:373–384

    Article  Google Scholar 

  • De Geer G (1940) Geochronologia Suecica, principles. Kungliga Svenska Vetenskapsakademiens Handlingar 18(6), Almqvist & Wiksells Boktryckeri AB, Stockholm

  • DeGeer G (1912) A geochronology of the last 12 000 years. Congres de Geologie International, Compte Rendu 11. Stockholm 1910:241–253

    Google Scholar 

  • Ek B-M (2010) Map of the quaternary deposits 14F Rättvik SV, scale 1:100 000. Geological Survey of Sweden, K210

  • Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324:169–187

    Article  Google Scholar 

  • Jakobsson M, Björk S, O’Regan M, Floden T, Greenwood SL, Swärd H, Lif A, Ampel L, Koyi H, Skelton A (2014) Major earthquake at the Pleistocene-Holocene transition in Lake Vättern, southern Sweden. Geology. doi:10.1130/G35499.1

    Google Scholar 

  • Jibson RW (1996) Use of landslides for paleoseismic analysis. Eng Geol 43:291–323

    Article  Google Scholar 

  • Johnston AC (1987) Suppression of earthquakes by large continental ice sheets. Nature 330:467–469

    Article  Google Scholar 

  • Kujansuu R (1964) Nuorista siirroksista Lapissa. English summary: recent faults in Lapland. Geologi 16:30–36

    Google Scholar 

  • Lagerbäck R (1978) Neotectonic structures in northern Sweden. GFF 100:263–269

    Google Scholar 

  • Lagerbäck R (1990) Late Quaternary faulting and paleoseismicity in northern Fennoscandia with particular reference to the Lansjärv area, Northern Sweden. GFF 112:333–354

    Google Scholar 

  • Lagerbäck R (1992) Dating of late quaternary faulting in northern Sweden. J Geolog Soc 149:285–291

    Article  Google Scholar 

  • Lagerbäck RH, Henkel H (1977) Studier av neotektonisk aktivitet i mellersta och norra Sverige, flygbildsgenomgång och geofysisk tolkning av recenta förkastningar (Studies of neotectonic activities in central and northern Sweden, review of aerial photos and geophysical interpretation of recent faults). KBS TR 19, Svensk Kärnbränslehantering AB, Skbf/Kbs. Stockholm, Sweden

  • Lagerbäck R, Sundh M (2008) Early Holocene faulting and paleoseismicity in northern Sweden, Sveriges geologiska undersökning, Research Paper C 836, 84 pp. SGU, Sweden

  • Lagerbäck R, Witschard F (1983) Neotectonics in northern Sweden—geological investigations. SKB Technical Report 83–58

  • Lagerbäck R, Sundh M, Svedlund J-O, Johansson H (2005) Forsmark site investigation: Searching for evidence of late or postglacial faulting in the Forsmark region. SKB Report R-05-51

  • Lantmäteriet (2010) Produktbeskrivning: GSD-Höjddata, grid 2+

  • Lundqvist J (1998) Weichsel-istidens huvedfas. In: Fredén C (ed) Sveriges Nationalatlas, Berg och jord, pp 124–135

  • Lundqvist J, Lagerbäck R (1976) The Pärve Fault: a late-glacial fault in the Precambrian of Swedish Lapland. GFF 98:45–51

    Google Scholar 

  • Mikko H (2010a) Map of the Quaternary Deposits 14G Ockelbo SV, scale 1:100 000. Geological Survey of Sweden, K213

  • Mikko H (2010b) Map of the Quaternary Deposits 14G Ockelbo NV, scale 1:100 000. Geological Survey of Sweden, K212

  • Mikko H (2011a) Map of the Quaternary Deposits14F Rättvik NO, scale 1:100 000. Geological Survey of Sweden, K346

  • Mikko H (2011b) Map of the Quaternary Deposits 15G Bollnäs NV, scale 1:100 000. Geological Survey of Sweden, K214

  • Mikko H, Backström A (2010) Map of the Quaternary Deposits14F Rättvik NV, scale 1:100 000. Geological Survey of Sweden, K345

  • Mikko H, Dahlberg N (2010) Map of the Quaternary Deposits 14F Rättvik SO, scale 1:100 000. Geological Survey of Sweden, K211

  • Mikko H and Wiberg B (2011) Map of the Quaternary Deposits 15G Bollnäs SV, scale 1:100 000. Geological Survey of Sweden, K216

  • Mikko H, Rodhe L, Wiberg B (2011) Map of the quaternary deposits 15G Bollnäs SO, scale 1:100 000. Geological Survey of Sweden, K217

  • Mörner NA (1980) A 10,700 years’ paleotemperature record from Gotland and Pleistocene/Holocene boundary events in Sweden. Boreas 9:283–287

    Article  Google Scholar 

  • Mörner NA (1985) Liquefaction and varve deformation as evidence of paleoseismic events and tsunamis. The Autumn 10,430 BP case in Sweden. Quat Sci Rev 15:939–948

    Article  Google Scholar 

  • Mörner NA (2004) Active faults and paleoseismicity in Fennoscandia, especially Sweden. Primary structures and secondary effects. Tectonophysics 380:139–157

    Article  Google Scholar 

  • Muir Wood R (1989) Extraordinary deglaciation reverse faulting in northern Fennoscandia. In: Gregersen S, Basham PW (eds) Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. Kluwer, Dordrecht, pp 141–173

    Chapter  Google Scholar 

  • Muir Wood R (1993) A review of the seismotectonics of Sweden. SKB technical report pp 93–13

  • Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis: an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44:1–76

    Article  Google Scholar 

  • Olesen O, Blikra LH, Braathen A, Dehls JF, Olsen L, Rise L, Roberts D, Riis F, Faleide JI, Anda E (2004) Neotectonic deformation in Norway and its implications: a review. Norw J Geol 84:3–34

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Turney CSM, van der Plicht J (2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years calBP. Radiocarbon. doi:10.2458/azu_js_rc.55.16947

    Google Scholar 

  • Ritter DF, Kochel RC, Miller JR (2002) Process geomorphology. McGraw Hill, New York

    Google Scholar 

  • Rodhe L, Mikko H, Wahlroos, J-E (2013) Map of the quaternary deposits 15F Voxna SO, scale 1:100 000. Geological Survey of Sweden, K432

  • Stewart IS, Sauber J, Rose J (2000) Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quat Sci Rev 19:1367–1389

    Article  Google Scholar 

  • Strömberg B (1989) Late Weichselian deglaciation and clay varve chronology in east-central Sweden. Geological Survey of Sweden, Series Ca, Nr 73

  • Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Sukotjo S, Sträng T (2005) Bedrock Map 14G Ockelbo NO, scale 1:50 000. Geological Survey of Sweden, K22

  • Sundh M, Mikko H (2011) Map of the Quaternary Deposits15G Bollnäs NO, scale 1:100 000. Geological Survey of Sweden, K215

  • Sutinen R (2005) Timing of Early Holocene Landslides in Kittilä, Finnish Lapland. Geol Surv Finland Spec Pap 40:53–58

    Google Scholar 

  • Sutinen R, Hyvönen E, Kukkonen I (2014a) LiDAR detection of paleolandslides in the vicinity of the Suasselkä postglacial fault, Finnish Lapland. Int J Appl Earth Observ Geoinform 27:91–99

    Article  Google Scholar 

  • Sutinen R, Hyvönen E, Middleton M, Ruskeeniemi T (2014b) Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Glob Planet Change 15:24–32

    Article  Google Scholar 

  • Valera JE, Traubenik ML, Egan JA, Kaneshiro JY (1994) A practical perspective on liquefaction of gravels. In: Prakash S, Dakoulas P (eds) Ground failures under seismic conditions. American Society Civil Engineers Special Publication 44, pp 241–257

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 18:974–1002

    Google Scholar 

  • Wu P (1999) Intraplate earthquakes and postglacial rebound in eastern Canada and Northern Europe. In: Wu P (ed) Dynamics of the ice age earth, a modern perspective. Trans Tech Publications, Zurich, pp 443–458

    Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the Swedish Nuclear Fuel and Waste Management Co. (Svensk Kärnbränslehantering AB). The authors appreciate the support, enthusiasm, and involvement of R. Munier in this project from funding, to fieldwork, to commenting on the manuscript. T.V. Lowell read and commented extensively on an earlier draft of this manuscript. His critical review and suggestions led to a much improved document. Thanks is also extended to R. Lagerbäck for sharing his experience in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colby A. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, C.A., Sundh, M. & Mikko, H. Surficial geology indicates early Holocene faulting and seismicity, central Sweden. Int J Earth Sci (Geol Rundsch) 103, 1711–1724 (2014). https://doi.org/10.1007/s00531-014-1025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-014-1025-6

Keywords

Navigation