Skip to main content
Log in

Phase equilibrium, geothermobarometric and xenotime age dating constraints on the Alpine metamorphism recorded in chloritoid schists from the southern part of the Tisia Mega-Unit (Slavonian Mts., NE Croatia)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The chloritoid schists from the Slavonian Mts., which are attributed to the basal part of Devonian to Permian “Hercynian Semimetamorphic Complex,” represent a very rare lithology, not only in the Tisia Mega-Unit outcrops in Croatia, but also in the wider area. The investigated outcrop in the Kutjevačka Rijeka transect (Mt. Papuk) encompasses chloritoid-bearing metapelitic and metapsammitic lithologies. Both contain K-white mica, chlorite, chloritoid (10–15 vol.%), quartz and minor K-feldspar, plagioclase (albite), opaque minerals and pyrophyllite, together with accessory zircon, rutile, xenotime. The Th–U–Pb age dating on xenotime grains within the K-white mica + chlorite + quartz matrix and on inclusions found inside the chloritoids gave an average age 120 ± 36 Ma. Peak metamorphic conditions during the Alpine chloritoid-forming event reached 3.5–4 kbar and 340–380 °C, based on phengite barometry, chlorite–chloritoid thermometry and intersection of chlorite and chloritoid isopleths in the KFMASH quantitative phase diagram. The post-tectonic character of lath- and rosette-shaped chloritoids with respect to two foliations in the rock, together with the older age of 219 ± 81 Ma obtained on Yb-rich xenotime core domain(s), implies a possible existence of older low-grade metamorphic phase(s). The chemistry of the chloritoid schists bears the signature of upper continental crustal felsic rocks as potential protoliths, probably the felsic rocks of the nearby Papuk Complex of Slavonian Mts. The evidence presented here for the chloritoid-bearing low-grade metamorphic rocks from the Slavonian Mountains clearly show that the prograde Alpine metamorphic event had a more significant influence on the evolution of the southern part of Tisia Mega-Unit than previously considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Árkai P (2002) Phyllosilicates in very low-grade metamorphism: transformation to micas. Rev Mineral Geochem 46:463–478

    Article  Google Scholar 

  • Árkai P, Bérczi-Makk A, Balogh K (2000) Alpine low-T prograde metamorphism in the post-Variscan basement of the Great Plain, Tisza Unit (Pannonian Basin, Hungary). Acta Geol Hung 43:43–63

    Google Scholar 

  • Árkai P, Faryad SW, Vidal O, Balogh K (2003) Very low-grade metamorphism of sedimentary rocks of the Meliata unit, Western Carpathians, Slovakia: implications of phyllosilicate characteristics. Int J Earth Sci 92:68–85

    Google Scholar 

  • Balen D, Horváth P, Tomljenović B, Finger F, Humer B, Pamić J, Árkai P (2006) A record of pre-Variscan Barrovian regional metamorphism in the eastern part of the Slavonian Mountains (NE Croatia). Mineral Petrol 87:143–162

    Article  Google Scholar 

  • Belak M (2005) Metamorfne stijene facijesa plavih i zelenih škriljavaca na Medvednici (Metamorphic rocks of the blueschist and greenschist facies on the Medvednica Mt.). PhD thesis, University of Zagreb, pp 295 (in Croatian)

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Biševac V, Balogh K, Balen D, Tibljaš D (2010) Alpine (Cretaceous) very low- to low-grade metamorphism recorded on the illite-muscovite-rich fraction of metasediments from South Tisia (eastern Mt Papuk, Croatia). Geol Carpathica 61:469–481

    Google Scholar 

  • Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Brkić M, Jamičić D, Pantić N (1974) Karbonske naslage u Papuku (sjeveroistočna Hrvatska) (Carboniferous deposits in Mount Papuk (northeastern Croatia)). Geol vjesnik Zagreb 27:53–58 (in Croatian)

    Google Scholar 

  • Caddick MJ, Thompson AB (2008) Quantifying the tectono-metamorphic evolution of pelitic rocks from a wide range of tectonic settings: mineral compositions in equilibrium. Contrib Mineral Petrol 156:177–195

    Article  Google Scholar 

  • Chopin C (1983) Magnesiochloritoid, a key-mineral for the petrogenesis of highgrade pelitic blueschists. Bull Mineral 106:715–717

    Google Scholar 

  • Chopin C (1985) Les relations de phases dans les metapelites de haute pression. PhD thesis, Université Pierre et Marie Curie, Paris, pp 80

  • Chopin C, Monié P (1984) A unique magnesiochlortoid-bearing, high-pressure assemblage from the Monte Rosa, Western Alps: petrologic and 40Ar-39Ar radiometric study. Contrib Mineral Petrol 87:388–398

    Article  Google Scholar 

  • Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20:683–696

    Article  Google Scholar 

  • Csontos L (1995) Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Vulcanol 7:1–13

    Google Scholar 

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210:1–56

    Article  Google Scholar 

  • Cullers RL (1994a) The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the wet mountains region, Colorado, USA. Chem Geol 113:327–343

    Article  Google Scholar 

  • Cullers RL (1994b) The controls on the major-and trace-element variation of shales, siltstones and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediments in Kansas, USA. Geochim Cosmochim Acta 58:4955–4972

    Article  Google Scholar 

  • Cullers RL (1995) The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, USA. Chem Geol 123:107–131

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  Google Scholar 

  • Cullers RL (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem Geol 191:305–327

    Article  Google Scholar 

  • Cullers RL, Podkovyrov VN (2002) The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambr Res 117:157–183

    Article  Google Scholar 

  • Finger F, Krenn E, Riegler G, Romano S, Zulauf G (2002) Resolving Cambrian, Carboniferous, Permian and Alpine monazite generations in the polymetamorphic basement of the eastern Crete (Greece) by means of the electron microprobe. Terra Nova 14:233–240

    Article  Google Scholar 

  • Fodor L, Csontos L, Bada G, Györfi I, Benkovics L (1999) Tertiary tectonic evolution of the Pannonian Basin system and neighbouring orogens: a new synthesis of palaeostress data. In: Durand D, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean basins: tertiary extension within the Alpine Orogen, vol 156. Geol Soc London Spec Publ, pp 295–334

  • Géczy B (1973) The origin of Jurassic faunal provinces and the Mediterranean plate tectonics. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Geologica 16:99–114

    Google Scholar 

  • Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381:235–273

    Article  Google Scholar 

  • Hetherington CJ, Jercinovic MJ, Williams ML, Mahan K (2008) Understanding geologic processes with xenotime: composition, chronology, and a protocol for electron probe microanalysis. Chem Geol 254:133–147

    Article  Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–MnO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. J Metamorph Geol 8:89–124

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holland TJB, Baker JM, Powell R (1998) Mixing properties and activity-composition relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. Eur J Mineral 10:395–406

    Google Scholar 

  • Horváth P (2007) P-T pseudosections in KFMASH, KMnFMASH, NCKFMASH and NCKMnFMASH systems: a case study from garnet-staurolite mica schist from the Alpine metamorphic basement of the Pannonian Basin (Hungary). Geol Carpathica 58:107–119

    Google Scholar 

  • Horváth P, Árkai P (2002) Pressure–temperature path of metapelites from the Algyő–Ferencszállás area, SE Hungary: thermobarometric constraints from coexisting mineral assemblages and garnet zoning. Acta Geol Hung 45:1–27

    Article  Google Scholar 

  • Horváth P, Balen D, Finger F, Tomljenović B, Krenn E (2010) Contrasting P-T-t paths from the basement of the Tisia Unit (Slavonian Mts., NE Croatia): application of quantitative phase diagrams and monazite age dating. Lithos 117:269–282

    Article  Google Scholar 

  • Hoschek G (1967) Untersuchungen zum Stabilitätsbereich von Chloritoid und Staurolith. Contrib Mineral Petrol 14:123–162

    Article  Google Scholar 

  • Hoschek G (1969) The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks. Contrib Mineral Petrol 22:208–232

    Article  Google Scholar 

  • Jamičić D (1983) Strukturni sklop metamorfnih stijena Krndije i južnih padina Papuka (Structural fabric of the metamorphosed rocks of Mt. Krndija and the eastern part of Mt.Papuk). Geol vjesnik Zagreb 36:51–72 (in Croatian)

    Google Scholar 

  • Jamičić D (1988) Strukturni sklop slavonskih planina (Tectonics of the Slavonian Mts.). PhD thesis, University of Zagreb, pp 152 (in Croatian)

  • Jamičić D (1989) Basic geological map of Yugoslavia in scale 1:100.000, sheet Daruvar. Geol Inst Zagreb, Fed Geol Inst Beograd

  • Jamičić D, Brkić M (1987) Basic geological map of Yugoslavia in scale 1:100.000, sheet Orahovica. Geol Inst Zagreb, Fed Geol Inst Beograd

  • Jamičić D, Brkić M, Crnko J, Vragović M (1986) Basic geological map of Yugoslavia–explanatory notes for sheet Orahovica. Geol Inst Zagreb, Fed Geol Inst Beograd

  • Janots E, Engi M, Berger A, Allaz J, Schwarz JO, Spandler C (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenotime phase relations from 250 to 610 degrees C. J Metamorph Geol 26:509–526

    Article  Google Scholar 

  • Koroknai B, Horváth P, Németh T, Pelikán P (2000) Chloritoid schists from the Uppony and Szendrö Paleozoic (NE Hungary): implications for Alpine structural and metamorphic evolution. Slovak Geol Mag 6:269–272

    Google Scholar 

  • Koroknai B, Horváth P, Németh T (2001) Chloritoid schists from the Uppony Mts (NE Hungary): mineralogical, petrological and structural data from a new occurrence. Acta Geol Hung 44:47–65

    Google Scholar 

  • Kositcin N, McNaughton NJ, Neal J, Griffen BJ, Fletcher IR, Groves DI, Rasmussen B (2003) Textural and geochemical discrimination between xenotime of different origin in the Archean Witwatersrand basin, South Africa. Geochim Cosmochim Acta 67:709–731

    Article  Google Scholar 

  • Krenn E, Ustaszewski K, Finger F (2008) Detrital and newly formed metamorphic monazite in amphibolite-facies metapelites from the Motajica Massif, Bosnia. Chem Geol 254:164–174

    Article  Google Scholar 

  • Lelkes-Felvári G, Árkai P, Sassi FP, Balogh K (1996) Main features of the regional metamorphic events in Hungary: a review. Geol Carpathica 47:257–270

    Google Scholar 

  • Lelkes-Felvári G, Frank W, Schuster R (2003) Geochronological constraints of the Variscan, Permian-Triassic and eo-Alpine (Cretaceous) evolution of the Great Hungarian Plain basement. Geol Carpathica 54:299–315

    Google Scholar 

  • Márton E (2000) The Tisza megatectonic unit in the light of paleomagnetic data. Acta Geol Hung 43:329–343

    Google Scholar 

  • Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol 96:212–224

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:1021. doi:10.1029/2000GC000109

    Article  Google Scholar 

  • McLennan SM, Taylor SR (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J Geol 99:1–21

    Article  Google Scholar 

  • Messiga B, Kienast JR, Rebay G, Riccardi P, Tribuzio R (1999) Cr-rich magnesiochloritoid eclogites from the Monviso ophiolites (Western Alps, Italy). J Metamorph Geol 17:287–299

    Article  Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet Ch, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Overstreet WC (1967) The geologic occurrence of monazite. US Geological Survey Professional Paper 530

  • Pamić J, Jamičić D (1986) Metabasic intrusive rocks from the Paleozoic Radlovac complex of Mt. Papuk in Slavonija (northern Croatia). Rad Jugosl Akad Znan Umjet Zagreb 424:97–125

    Google Scholar 

  • Pamić J, Jurković I (2002) Paleozoic tectonostratigraphic units in the northwest and central Dinarides and the adjoining South Tisia. Int J Earth Sci 91:538–554

    Article  Google Scholar 

  • Pamić J, Lanphere M (1991) Hercynian granites and metamorphic rocks from the Papuk, Psunj, Krndija and the surrounding basement of the Pannonian Basin (Northern Croatia, Yugoslavia). Geologija Ljubljana 34:81–253

    Article  Google Scholar 

  • Pamić J, Lanphere M, McKee E (1988) Radiometric ages of metamorphic and associated igneous rocks of the Slavonian Mountains in the southern part of the Pannonian Basin, Yugoslavia. Acta Geol Zagreb 18:13–39

    Google Scholar 

  • Pamić J, Balen D, Tibljaš D (2002) Petrology and geochemistry of orthoamphibolites from the Variscan metamorphic sequences of the South Tisia in Croatia—an overview with geodynamic implications. Int J Earth Sci 91:787–798

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1984) A new model for quantitative X-ray microanalyses, Part I. Application to the analyses of homogenous samples. La Recherche Aerospatiale 3:13–38

    Google Scholar 

  • Powell R, Holland TJB, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol 16:577–588

    Article  Google Scholar 

  • Pyle J, Spear F, Wark DA (2002) Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. In: Kohn ML, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Reviews in Mineralogy and Geochemistry 48:337–362

  • Rasmussen B, Muhling JR (2007) Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contrib Mineral Petrol 154:675–689

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Muhling JR, Wilde SA (2010) In situ U-Th-Pb geochronology of monazite and xenotime from the Jack Hills belt: implications for the age of deposition and metamorphism of Hadean zircons. Precambr Res 180:26–46

    Article  Google Scholar 

  • Rosenberg PE (2002) The nature, formation, and stability of end-member illite: a hypothesis. Am Min 87:103–107

    Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alps–Carpathians–Dinarides connection: a compilation of tectonic units. Swiss J Geosci 101:139–183

    Article  Google Scholar 

  • Simon G, Chopin C, Schenk V (1997) Near-end-member magnesiochloritoid in prograde-zoned pyrope, Dora-Maira massif, western Alps. Lithos 41:37–57

    Article  Google Scholar 

  • Slovenec D (1986) Nalazi pirofilita, paragonita, margarita i glaukonita u stijenama slavonskih planina (Registrations of Pyrophyllite, Paragonite, Margarite and Glauconite in the Rocks of the Slavonian Mountains). Geol vjesnik Zagreb 39:61–74 (in Croatian)

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineral Soc Am Monograph, Washington

    Google Scholar 

  • Suzuki K, Adachi M (1991) Precambrian provenance and Silurian metamorphism of the Tsubonasawa paragneiss in the South Kitakami terrane, Northwest Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem J 25:357–376

    Article  Google Scholar 

  • Suzuki K, Adachi M, Tanaka T (1991) Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th-U-total Pb evidence from an electron microprobe monazite study. Sedimentary Geol 75:141–147

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

  • Ustaszewski K, Kounov A, Schmid SM, Schaltegger U, Krenn E, Frank W, Fügenschuh B (2010) Evolution of the Adria-Europe plate boundary in the northern Dinarides: from continent–continent collision to back-arc extension. Tectonics 29:TC6017. doi:10.1029/2010TC002668

  • Vallini D, Rasmussen B, Krapež B, Fletcher IR, McNaughton N (2005) Microtextures, geochemistry and geochronology of authigenic xenotime: constraining the cementation history of a Palaeoproterozoic metasedimentary sequence. Sedimentology 52:101–122

    Article  Google Scholar 

  • Varga AR, Szakmány G (2004) Geochemistry and provenance of the upper carboniferous sandstones from borehole Diósviszló-3 (Téseny Sandstone Formation, SW Hungary). Acta Mineral Petrogr Szeged 45:7–14

    Google Scholar 

  • Varga A, Szakmány Gy, Árgyelán T, Józsa S, Raucsik B, Máthé Z (2007) Complex examination of the upper paleozoic siliciclastic rocks from southern Transdanubia, SW Hungary—mineralogical, petrographic, and geochemical study. In: Arribas J, Critelli S, Johnsson MJ (eds) Sedimentary provenance and petrogenesis: perspectives from petrography and geochemistry. Geol Soc Am Spec Paper 420:221–240

  • Velić I, Vlahović I (eds) (2009) Tumač Geološke karte Republike Hrvatske 1:300.000 (Explanatory notes for geological map of Croatia 1.300.000). Hrvatski geološki institut Zagreb

  • Vidal O, Parra T (2000) Exhumation paths of high-pressure metapelites obtained from local equilibria for chlorite-phengite assemblages. Geol J 35:139–161

    Article  Google Scholar 

  • Vidal O, Theye T, Chopin C (1994) Experimental study of chloritoid stability at high pressure and various fO2 conditions. Contrib Mineral Petrol 118:256–270

    Article  Google Scholar 

  • Vidal O, Goffé B, Bousquet R, Parra T (1999) Calibration and testing of an empirical chloritoid-chlorite Mg-Fe exchange thermometer and thermodynamic data for daphnite. J Metamorph Geol 17:25–39

    Article  Google Scholar 

  • Vragović M, Majer V (1979a) Kloritoidni škriljci u metamorfnim kompleksima u sjevernoj Hrvatskoj (Jugoslavija) (Chloritoid schists in the metamorphic complexes in northern Croatia (Yugoslavia)). Geol vjesnik Zagreb 31:287–294 (in Croatian)

    Google Scholar 

  • Vragović M, Majer V (1979b) Prilozi za poznavanje metamorfnih stijena Zagrebačke gore, Moslavačke gore i Papuka (Hrvatska, Jugoslavija) (Metamorphosed ultramafic rocks from Papuk Mountain, cordierite rocks from Moslavačka mountain, and chloritoid-bearing metapelites from Zagrebačka mountain, northern Yugoslavia). Geol vjesnik Zagreb 31:295–308 (in Croatian)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ralf Schuster for his helpful and constructive comments. This research was supported by Croatian Ministry of Science, Education and Sports grant 119-1191155-1156. The field and laboratory work were partly covered by bilateral (Austria–Croatia and Croatia–Hungary) scientific cooperation programs (project leaders F. Finger and D. Balen and D. Balen and P. Árkai/P. Horváth, respectively). Mrs. Zorica Petrinec is gratefully acknowledged for her help during preparation of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dražen Balen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balen, D., Horváth, P., Finger, F. et al. Phase equilibrium, geothermobarometric and xenotime age dating constraints on the Alpine metamorphism recorded in chloritoid schists from the southern part of the Tisia Mega-Unit (Slavonian Mts., NE Croatia). Int J Earth Sci (Geol Rundsch) 102, 1091–1109 (2013). https://doi.org/10.1007/s00531-012-0850-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0850-8

Keywords

Navigation