, Volume 99, Issue 5, pp 1027-1049
Date: 26 May 2009

Factors controlling present-day tufa dynamics in the Monasterio de Piedra Natural Park (Iberian Range, Spain): depositional environmental settings, sedimentation rates and hydrochemistry

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The tufa record and hydrochemical characteristics of the River Piedra in the Monasterio de Piedra Natural Park (NE Spain) were studied for 6 years. The mean discharge of this river was 1.22 m3/s. The water was supersaturated with calcium carbonate. The HCO3 , Ca2+ and TDIC concentrations decreased along the 0.5-km-long studied stretch, whereas the calcite SI showed no systematic downstream or seasonal variation over the same stretch. Several sedimentary subenvironments exist in which four broad types of tufa facies form: (1) Dense laminated tufa (stromatolites), (2) Dense to porous, massive tufa, (3) Porous, coarsely laminated tufa with bryophytes and algae, and (4) Dense, hard, laminated deposits in caves. The half-yearly period thickness and weight of sediment accumulated on 14 tablets installed in several subenvironments showed that the deposition rate was greater in fast flowing river areas and in stepped waterfalls, and lower in slow flowing or standing river areas and in spray and splash areas. Mechanical CO2 outgassing is the main factor controlling calcite precipitation on the river bed and in waterfalls, but this process does not explain the seasonal changes in depositional rates. The deposition rates showed a half-yearly period pattern recorded in all fluvial subenvironments persistent over time (5.26 mm, 0.86 g/cm2 in warm periods; 2.26 mm, 0.13 g/cm2 in cool periods). Mass balance calculations showed higher calcite mass values in warm (21.58 mg/L) than in cool (13.68 mg/L) periods. This biannual variation is mainly attributed to the seasonal differences in temperature that caused changes in inorganic calcite precipitation rate and in biomass and the correlative photosynthetic activity. Tufa sedimentation was therefore controlled by both physicochemical and biological processes. The results of this study may help test depositional rates and their environmental controls and thus assess the climatic and hydrological significance of ancient tufas in semi-arid conditions, in particular in the Quaternary.