Skip to main content

Advertisement

Log in

A late Holocene paleo-productivity record in the western Gulf of Maine, USA, inferred from growth histories of the long-lived ocean quahog (Arctica islandica)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

To investigate environmental variability during the late Holocene in the western Gulf of Maine, USA, we collected a 142-year-old living bivalve (Arctica islandica) in 2004, and three fossil A. islandica shells of the Medieval Warm Period (MWP) and late MWP / Little Ice Age (LIA) period (corrected 14CAMS = 1030 ± 78 ad; 1320 ± 45 ad; 1357 ± 40 ad) in 1996. We compared the growth record of the modern shell with continuous plankton recorder (CPR) time-series (1961–2003) from the Gulf of Maine. A significant correlation (r 2 = 0.55; p < 0.0001) exists between the standardized annual growth index (SGI) of the modern shell and the relative abundance of zooplankton species Calanus finmarchicus. We therefore propose that SGI data from A. islandica is a valid proxy for paleo-productivity of at least one major zooplankton taxa. SGIs from these shells reveal significant periods of 2–6 years (NAO-like) based on wavelet analysis, multitaper method (MTM) analysis and singular spectrum analysis (SSA) during the late Holocene. Based on established physical oceanographic observation in the Gulf of Maine, we suggest that slope water variability coupled with North Atlantic Oscillation (NAO) dynamics is primarily responsible for the observed SGI variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beal BF, Kraus MG (1989) Effects of intraspecific density on the growth of Arctica islandica Linné inside field enclosures located in eastern Maine, USA. J Shellfish Res 8:462

    Google Scholar 

  • Box G, Jenkins GM (1976) Time series analysis. Holden-Day, San Francisco, 553 p

  • Cargnelli LM, Griesbach SJ, Packer DB, Weissberger E (1999) Essential fish habitat source document: ocean quahog, Arctica islandica, life history and habitat characteristics. NOAA Technical Memorandum, NMFS-NE-148, 12 p

  • Clark RA, Frid CLJ, Batten SD (2001) A critical comparison of two long-term zooplankton time-series from the central-west North Sea. J Plankton Res 23:27–39

    Article  Google Scholar 

  • Conversi A, Piontkovski S, Hameed S (2001) Seasonal and interannual dynamics of Calanus finmarchicus in the Gulf of Maine (Northeastern US shelf) with reference to the North Atlantic Oscillation. Deep Sea Res II 48:519–530

    Article  Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, 394 p

  • Daubechies I (1990) The wavelet transform time-frequency localization and signal analysis. IEEE Tran Inform Theory 36:961–1004

    Article  Google Scholar 

  • Dickson R, Meincke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38:241–295

    Article  Google Scholar 

  • Drinkwater KF, Mountain DB (1997) Climate and oceanography in Northwest Atlantic groundfish, Am. Fish. Soc., Bethesda, MD, pp 3–25

  • Drinkwater KF, Mountain DB, Herman A (1999) Variability in the slope water properties off eastern North America and their effects on adjacent shelves. ICES. CM 1999/O:08, 26

  • Drinkwater KF, Belgrano A, Borja A, Conversi A, Edwards M, Greene CH, Ottersen G, Pershing AJ, Walker H (2003) The response of marine ecosystems to climate variability associated with the North Atlantic Oscillation. In: Hurrell J, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. Am. Geophys. Union., Washington, DC, pp 211–234

    Google Scholar 

  • Forsythe GTW, Scourse JD, Harris I, Richardson CA, Jones P, Briffa K, Heinemeier J (2003) Towards an absolute chronology for the marine environment: the development of a 1000-year record from Arctica islandica, Geophys. Res. Abstr., Europ. Geophys. Soc., 5

  • Greene CH, Pershing AJ (2001) The response of Calanus finmarchicus populations to climate variability in the Northwest Atlantic: Basin-scale forcing associated with the North Atlantic Oscillation (NAO). ICES J Mar Sci 57:1536–1544

    Article  Google Scholar 

  • Greene CH, Pershing AJ (2003) The flip-side of the North Atlantic Oscillation and modal shifts in slope-water circulation patterns. Limnol Oceanogr 48:319–322

    Google Scholar 

  • Helema S, Schöne BR, Kirchhefer AJ, Nielson JK, Rodland DL, Janssen R (2007) Compound response of marine and terrestrial ecosystems to varying climate: pre-anthropogenic perspective from bivalve shell growth increments and tree-rings. Mar Env Res 63:185–199

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Jones DS (1980) Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. Paleobiology 6:331–340

    Google Scholar 

  • Jones DS (1983) Sclerochronology: reading the record of the molluscan shell. Am Scientist 71:384–391

    Google Scholar 

  • Jones DS, Arthur MA, Allard DJ (1989) Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Mar Biol 102:225–234

    Article  Google Scholar 

  • Jossi JW, Goulet J (1993) Zooplankton trends: US north-east shelf ecosystems and adjacent regions differ from north-east Atlantic and North Sea. ICES J Mar Sci 50:303–313

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589

    Article  Google Scholar 

  • Keigwin LD, Pickart RS (1999) Slope water current over the Laurentian Fan on interannual to millennial timescales. Science 286:520–523

    Article  Google Scholar 

  • Kennish MJ, Lutz RA, Dobarro JA, Fritz LW (1994) In situ growth rates of the ocean quahog, Arctica islandica (Linnaeus, 1767), in the Middle Atlantic Bight. J Shellfish Res 13:473–478

    Google Scholar 

  • Kraus MG, Beal SR, Chapman SR, McMartin L (1992) A comparison of growth rates in Arctica islandica (Linnaeus, 1767) between field and laboratory populations. J Shellfish Res 11:289–294

    Google Scholar 

  • Lazzari M (2001) Monthly and annual means of sea surface temperature: Boothbay Harbor, Maine 1905–2004, pp 1–9

  • Loder JW, Petrie B, Gawarkiewicz G (1998) The coastal ocean off northeastern North America: a large-scale view. Sea 11:105–133

    Google Scholar 

  • Loder JW, Shore JA, Hannah CG, Petrie BD (2001) Decadal-scale hydrographic and circulation variability in the Scotia-Maine region. Deep Sea Res II 48:3–35

    Article  Google Scholar 

  • Mann ME, Lees J (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Change 33:409–445

    Article  Google Scholar 

  • Marchitto TM, Jones GA, Goodfriend GA, Weidman CR (2000) Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quatern Res 53:236–246

    Article  Google Scholar 

  • Marsh R, Petrie B, Weidman CR, Dickson RR, Loder JW, Hannah CG, Frank K, Drinkwater K (1999) The 1882 tilefish kill—a cold event in shelf waters off the north-eastern United States? Fish Oceanogr 8:39–49

    Article  Google Scholar 

  • MERCINA (2001) Oceanographic responses to climate in the Northwest Atlantic. Oceanography 14:76–82

    Google Scholar 

  • MERCINA (2003) Trans-Atlantic responses of Calanus finmarchicus populations to basin-scale forcing associated with the North Atlantic Oscillation. Prog Oceanogr 58:301–312

    Article  Google Scholar 

  • Pershing AJ, Greene CH, Planque B, Fromentin J-M (2004) The influences of climate variability on North Atlantic zooplankton populations. In: Stenseth NC, Ottersen G, Hurrell J, Belgrano A (eds) Ecological effects of climatic variations in the North Atlantic. Oxford University Press, pp 56–69

  • Pershing AJ, Greene CH, Jossi JW, O’Brien L, Brodziak JKT, Bailet BA (2005) Interdecadal variability in the Gulf of Maine zooplankton community, with potential impacts on fish recruitment. ICES J Mar Sci 62:1511–1523

    Article  Google Scholar 

  • Petrie B, Yeats P (2000) Annual and interannual variability of nutrients and their estimated fluxes in the Scotian Shelf- Gulf of Maine region. Can J Fish Aquat Sci 57:2536–2546

    Article  Google Scholar 

  • Pettigrew NR, Townsend DW, Xue H, Wallinga JP, Brickley PJ, Hetland RD (1998) Observations of the Eastern Maine Coastal Current and its offshore extensions in 1994. J Geophys Res 103:30, 623–630, 639

    Google Scholar 

  • Pickart RS, McKee DJ, Harrington SA (1999) Mean structure and interannual variability of the slopewater south of Newfoundland. J Phys Oceanogr 29:2541–2558

    Article  Google Scholar 

  • Planque B, Fromentin J (1996) Calanus and the environment in eastern North Atlantic. II. Influence of the North Atlantic Oscillation on C. finmarchicus and C. helgolandicus. Mar Ecol Prog Ser 134:111–118

    Article  Google Scholar 

  • Ropes JW, Muraski SA (1983) Maximum shell length and longevity in ocean Quahogs, A. islandica Linné. ICES CM, K:32, pp 1–8

  • Ropes JW, Jones DS, Murawski SA, Serchuck FM, Jearld A (1984) Documentation of annual growth lines in ocean quahogs, Arctica islandica Linne. Fish Bull 82:1–19

    Google Scholar 

  • Schöne BR (2003) A ‘clam-ring’ master-chronology constructed from a short-lived bivalve mollusc from the northern Gulf of California. Holocene 13:39–49

    Article  Google Scholar 

  • Schöne BR, Oschmann W, Rössler J, Freyre Castro AD, Houk SD, Kröncke I, Dreyer W, Janssen R, Rumohr H, Dunca E (2003) North Atlantic oscillation dynamics recorded in shells of a long-lived bivalve mollusk. Geology 31:1237–1240

    Article  Google Scholar 

  • Schöne BR, Freyre Castro AD, Fiebig J, Houk SD, Oscmann W, Kroncke I (2004) Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeogr Palaeclimatol Palaeoecol 212:215–232

    Google Scholar 

  • Schöne BR, Fiebig J, Pfeiffer M, Gleβ R, Hickson J, Johnson A, Dreyer W, Oschmann W (2005a) Climate records from a bivalve Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeogr Palaeclimatol Palaeoecol 228:130–148

    Article  Google Scholar 

  • Schöne BR, Houk S, Freyre Castro AD, Fiebig J, Oschmann W, Kroncke I, Dreyer W, Gosselck F (2005b) Daily growth rates in shells of Arctica islandica: assessing sub-seasonal environmental controls on a long-lived bivalve mollusk. Palaios 20:78–92

    Article  Google Scholar 

  • Scourse J, Richardson A, Forsythe G, Harris I, Heinemeier J, Fraser N, Briffa K, Jones P (2006) First cross-matched floating chronology from the marine fossil record: data from growth lines of the long-lived bivalve mollusc Arctica islandica. Holocene 16:967–974

    Google Scholar 

  • Shanahan TM, Pigati JS, Dettman DL, Quade J (2005) Isotopic variability in the aragonite shells of freshwater gastropods living in springs with nearly constant temperature and isotopic composition. Geochim Cosmochim Acta 69:3946–3966

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C Age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Tanaka N, Monaghan MC, Turekian KW (1990) Δ14C balance for the Gulf of Maine, Long Island Sound and the northern Middle Atlantic Bight: evidence for the extent of Antarctic Intermediate Water contribution. J Mar Res 48:75–87

    Article  Google Scholar 

  • Taylor AH, Stephens JA (1998) The North Atlantic Oscillation and the latitude of the Gulf Stream. Tellus 50:134–142

    Article  Google Scholar 

  • Thomas TC, Townsend DW, Weatherbee R (2003) Satellite-measured phytoplankton variability in the Gulf of Maine. Cont Shelf Res 23:971–989

    Article  Google Scholar 

  • Thompson DJ (1982) Spectrum estimation and harmonic analysis. IEEE Proc 70:1055–1096

    Article  Google Scholar 

  • Thompson I, Jones DS, Dreibelbis D (1980) Annual internal growth banding and life history of the ocean quahog Arctica islandica (Mollusca: Bivalvia). Mar Biol 57:25–34

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Townsend DW, Thomas AC, Mayer LM, Thomas M, Quinlan J (2006) Oceanography of the Northwestern Atlantic Continental Shelf. In: Robin AR, Brink KH (eds) The Sea. Harvard University Press, pp 119–168

  • Vautard R, Ghil M (1989) Singular-Spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 35:395–424

    Article  Google Scholar 

  • Weidman CR, Jones GA (1993) A shell-derived time history of bomb 14C on Georges Bank and its Labrador Sea implications. J Geophys Res 98:14577–14588

    Article  Google Scholar 

  • Weidman C, Jones GA, Lohmann KC (1994) The long-lived mollusk Arctica islandica: a new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of northern Atlantic Ocean. J Geophys Res 99:318305–318314

    Google Scholar 

  • Witbaard R (1996) Growth variations in Arctica islandica L. (Mollusca): a reflection of hydrography-related food supply. ICES J Mar Sci 53:981–987

    Article  Google Scholar 

  • Witbaard R, Jenness MI, Borg K, van der Ganssen G (1994) Verification of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes. Neth J Sea Res 33:91–101

    Article  Google Scholar 

  • Witbaard R, Duinveld GCA, de Wild PAWJ (1997) A long-term growth record derived from Arctica islandica (Mollusca, Bivalvia) from the Fladen Ground (Northern North Sea). J Mar Biol Assoc UK 77:801–816

    Article  Google Scholar 

  • Witbaard R, Duinveld GCA, de Wild PAWJ (1999) Geographical differences in growth rates of Arctica islandica (Mollusca: Bivalvia) from the North Sea and adjacent waters. J Mar Biol Assoc UK 79:907–915

    Article  Google Scholar 

  • Witbaard R, Jansma E, Klaassen US (2003) Copepods link quahog growth to climate. J Sea Res 50:77–83

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dan Belknap and Joe Kelley (University of Maine) for the fossil shells from vibracore SBVC9609, David Rodland and Sven Baier for their help in preparing shell samples (INCREMENTS Research Group, University of Frankfurt), NOSAMS at Woods Hole Oceanographic Institution for AMS analyses, and the Association of Graduate Students (AGS) at the University of Maine for travel funds to the University of Frankfurt. The NOAA (Ocean-Atmosphere Research/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado, USA, (http://www.cdc.noaa.gov/)) provided the Kaplan SST V2 dataset. This paper was improved by comments and suggestions from Fred Andrus and an anonymous reviewer. This study has been made possible in part by a German Research Foundation (DFG) grant (to BRS) within the framework of the Emmy Noether Program. This research was funded through National Science Foundation (NSF ATM-0222553).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Wanamaker Jr..

Additional information

Special Issue: AGU OS06 special issue “Ocean’s role in climate change—a paleo perspective”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanamaker, A.D., Kreutz, K.J., Schöne, B.R. et al. A late Holocene paleo-productivity record in the western Gulf of Maine, USA, inferred from growth histories of the long-lived ocean quahog (Arctica islandica). Int J Earth Sci (Geol Rundsch) 98, 19–29 (2009). https://doi.org/10.1007/s00531-008-0318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0318-z

Keywords

Navigation