Skip to main content
Log in

Exponentially subelliptic harmonic maps from the Heisenberg group into a sphere

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study critical points \(\phi : {{{\mathbb {H}}}}_n \rightarrow S^m\) of the functional

$$\begin{aligned} E_1 (\phi ) = \int _\Omega \exp \left( \frac{1}{2} \, \left\| \nabla ^H \phi \right\| ^2_\theta \right) \; \theta \wedge (d \theta )^n \end{aligned}$$

for domains \(\Omega \subset \subset {{\mathbb {H}}}_n\) and a contact structure \(\theta \) on \({{\mathbb {H}}}_n\). These are solutions to the second order quasi-linear subelliptic PDE system

$$\begin{aligned} - \Delta _b \phi ^j + 2 \, e_b (\phi ) \, \phi ^j + G_\theta \big ( \nabla ^H e_b (\phi ) , \, \nabla ^H \phi ^j \big ) = 0, \;\;\; 1 \le j \le m+1, \end{aligned}$$

and arise through Fefferman’s construction (cf. Fefferman in Ann. Math. (2) 103:395–416, 1976; Ann. Math. (2) 104:393–394, 1976) i.e. as base maps \(\phi : {{\mathbb {H}}}_n \rightarrow S^m\) associated to \(S^1\) invariant exponentially wave maps \(\Phi : C({{\mathbb {H}}}_n ) \rightarrow S^m\) from the total space of the canonical circle bundle \(S^1 \rightarrow C({{\mathbb {H}}}_n ) \rightarrow {{\mathbb {H}}}_n\) endowed with the Fefferman metric \(F_{\theta }\). We establish Caccioppoli type estimates

$$\begin{aligned} \int _{B_r (x)} \exp \left( \frac{Q}{2} \, \left\| \nabla ^H \phi \right\| ^2_\theta \right) \, \left\| \nabla ^H u \right\| _{\theta }^Q \; \theta \wedge (d \theta )^n \le C r^\beta \end{aligned}$$

(\(0< \beta < 1\)) with \(Q = 2 n + 2\) (the homogeneous dimension of \({{\mathbb {H}}}_n\)) and show that any weak solution \(\phi \in \bigcap _{p \ge Q} W^{1, p}_H (\Omega , S^m )\) of finite p-energy \(E_p (\phi ) < \infty \) for some \(p \ge 2 Q\) is locally Hölder continuous i.e. \(\phi ^j \in S^{0, \alpha }_{\mathrm{loc}} (\Omega )\) for some \(0 < \alpha \le 1\) where \(S^{0,\alpha } (\Omega )\) are Hölder like spaces, built in terms of the Carnot–Carathéodory metric \(\rho _\theta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The symbol \(\pi \) in the right hand side of (17) is the irrational number \(\pi \in {{\mathbb {R}}} {\setminus } {{\mathbb {Q}}}\).

  2. First used by Hélein (cf. [29]) for ordinary harmonic maps from plane domains into \(S^m\).

  3. With respect to the Carnot–Carathéodory distance function. As the vector fields \(\{ X_\alpha \, , \; Y_\alpha : 1 \le \alpha \le n \}\) have globally Lipschitz coefficients it follows (by a result of Garofalo and Nhieu [25]) that a set \(\Omega \subset {{\mathbb {H}}}_n\) is bounded with respect to \(\rho _{\theta _0}\) if and only if \(\Omega \) is bounded with respect to the Euclidean metric on \({{\mathbb {R}}}^{2n+1}\).

  4. We write \(a \approx b\) when a and b are comparable i.e. \(a/C \le b \le C a\) for some constant \(C \ge 1\).

  5. Overlooked in [28], p. 17.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Aribi, A., Dragomir, S.: Dirichlet and Neumann eigenvalue problems on CR manifolds. Ricerche di Matematica (2018). https://doi.org/10.1007/s11587-018-0420-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Barletta, E., Dragomir, S., Urakawa, H.: Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds. Indiana Univ. Math. J. 50, 719–746 (2001)

    Article  MathSciNet  Google Scholar 

  4. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, Pure and Applied Mathematics. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  5. Bony, M.: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier Grenoble 19(1), 277–304 (1969)

    Article  MathSciNet  Google Scholar 

  6. Capogna, L., Danielli, D., Garofalo, N.: The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Commun. Anal. Geom. 2, 203–215 (1994)

    Article  MathSciNet  Google Scholar 

  7. Capogna, L., Garofalo, N.: Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type. J. Eur. Math. Soc. 5, 1–40 (2003)

    Article  MathSciNet  Google Scholar 

  8. Chiang, Y.-J., Hu, Y.-H.: Exponential wave maps. J. Geom. Phys. 57(12), 2521–2532 (2007)

    Article  MathSciNet  Google Scholar 

  9. Chiang, Y.-J.: Developments of Harmonic Maps, Wave Maps, and Yang-Mills Fields into Biharmonic Maps, Biwave Maps, and Bi-Yang-Mills Fields. Frontiers in Mathematics, p. xxi+399. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  10. Citti, G., Garofalo, N., Lanconelli, E.: Harnack’s inequality for sum of squares plus potential. Am. J. Math. 115, 699–734 (1993)

    Article  MathSciNet  Google Scholar 

  11. Danielli, D., Garofalo, N., Nhieu, D.-M.: Trace inequalities for Carnot–Carathéodory spaces and applications. Ann. Sc. Norm. Sup. Pisa 27(2), 195–202 (1998)

    MATH  Google Scholar 

  12. Danielli, D., Garofalo, N., Nhieu, D.-M.: Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot–Carathéodory spaces, vol. 182, no. 857. Memoirs of American Mathematical Society, Providence (2006)

    Article  Google Scholar 

  13. Dragomir, S., Perrone, D.: Levi harmonic maps of contact Riemannian manifolds. J. Geom. Anal. 24(3), 1233–1275 (2014)

    Article  MathSciNet  Google Scholar 

  14. Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds. Progress in Mathematics, vol. 246. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  15. Duc, D.M., Eells, J.: Regularity of exponentially harmonic functions. Int. J. Math. 2(4), 395–408 (1991)

    Article  MathSciNet  Google Scholar 

  16. Duzaar, F., Fuchs, M.: On removable singularities of \(p\)-harmonic maps. Annales de l’I.H.P. 7(5), 385–405 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Eells, J., Sampson, J.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 85, 109–160 (1964)

    Article  MathSciNet  Google Scholar 

  18. Eells, J., Lemaire, L.: Some Properties of Exponentially Harmonic Maps, Partial Differential Equations, vol. 27, pp. 129–136. Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Warszawa (1992)

    MATH  Google Scholar 

  19. Fefferman, C.: Monge–Ampére equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. Math. (2) 103(2), 395–416 (1976)

    Article  MathSciNet  Google Scholar 

  20. Fefferman, C.: Monge–Ampére equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. Math. (2) 104, 393–394 (1976)

    Article  MathSciNet  Google Scholar 

  21. Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Am. Math. Soc. 79(2), 373–376 (1973)

    Article  MathSciNet  Google Scholar 

  22. Folland, G.B., Stein, E.M.: Estimates for the \({\overline{\partial }}_b\)-complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)

    Article  Google Scholar 

  23. Franchi, B., Serapioni, R., Serra Cassano, F.: Approximation and embedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields. Bolletino U.M.I. 11–B, 83–117 (1997)

    MATH  Google Scholar 

  24. Fuglede, B.: Harmonic morphisms between semi-Riemannian manifolds. Ann. Acad. Sci. Fenn. 21, 31–50 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Garofalo, N., Nhieu, D.: Lipschitz continuity, global smooth approximation, and extension theorems for Sobolev functions in Carnot–Carathéodory spaces. Journal d’Analyse Mathématique 74, 67–97 (1998)

    Article  MathSciNet  Google Scholar 

  26. Graham, R.: On Sparling’s characterization of Fefferman metrics. Am. J. Math. 109, 853–874 (1987)

    Article  MathSciNet  Google Scholar 

  27. Hájlasz, P., Koskela, P.: Sobolev meets Poincaré. C. R. Acad. Sci. Paris 320, 1211–1215 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Hajlasz, P., Strzelecki, P.: Subelliptic \(p\)-harmonic maps into spheres and the ghost of Hardy spaces. Math. Ann. 312, 341–362 (1998)

    Article  MathSciNet  Google Scholar 

  29. Hélein, F.: Regularité des applications faiblement harmoniques entre une surface et une sphere. C. R. Acad. Sci. Paris 311, 519–524 (1990)

    MATH  Google Scholar 

  30. Hörmander, L.: Hypoelliptic second-order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  Google Scholar 

  31. Jerison, D., Sánchez-Calle, A.: Subelliptic second order differential operators. In: Berenstein, C.A. (ed) Complex Analysis III, Proceedings, University of Maryland 1985–86, Lecture Notes in Mathematics, vol. 1277. Springer, Berlin (1987)

    Google Scholar 

  32. John, F.: Partial Differential Equations, Applied Mathematical Sciences, vol. 1, 2nd edn. Springer, New York (1986)

    Google Scholar 

  33. Jost, J., Xu, C.-J.: Subelliptic harmonic maps. Trans. Am. Math. Soc. 350(11), 4633–4649 (1998)

    Article  MathSciNet  Google Scholar 

  34. Jost, J., Yang, Y.-H.: Heat flow for horizontal harmonic maps into a class of Carnot-Carathéodory spaces. Math. Res. Lett. 12(4), 513–530 (2005)

    Article  MathSciNet  Google Scholar 

  35. Kohn, J.J.: Boundaries of complex manifolds. In: Proceedings of the Conference on Complex Analysis, Minneapolis, 1964, pp. 81–94. Springer, New York (1965)

    Chapter  Google Scholar 

  36. Lee, J.M.: The Fefferman metric and pseudohermitian invariants. Trans. Am. Math. Soc. 296(1), 411–429 (1986)

    MATH  Google Scholar 

  37. Lewy, H.: On the local character of the solution of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables. Ann. Math. 64, 514–522 (1956)

    Article  MathSciNet  Google Scholar 

  38. Macias, R.A., Segovia, C.: A decomposition into atoms of distributions on spaces of homogeneous type. Adv. Math. 33, 271–309 (1979)

    Article  MathSciNet  Google Scholar 

  39. Mazet, E.: La formule de la variation seconde de l’energie au voisinage d’une application harmonique. J. Differ. Geom. 8, 279–296 (1973)

    Article  Google Scholar 

  40. Mitchell, J.: On Carnot–Carathéodory metrics. J. Differ. Geom. 21, 35–45 (1985)

    Article  Google Scholar 

  41. Moser, R.: Partial Regularity for Harmonic Maps and Related Problems. World Scientific, Singapore (2005)

    Book  Google Scholar 

  42. Nagel, A., Stein, E.E., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103–147 (1985)

    Article  MathSciNet  Google Scholar 

  43. Petit, R.: Harmonic maps and strictly pseudoconvex CR manifolds. Commun. Anal. Geom. 41(2), 575–610 (2002)

    Article  MathSciNet  Google Scholar 

  44. Sánchez-Calle, A.: Fundamental solutions and geometry of sums of squares of vector fields. Invent. Math. 78, 143–160 (1984)

    Article  MathSciNet  Google Scholar 

  45. Solomon, B.: Harmonic maps to spheres. J. Differ. Geom. 21, 151–162 (1985)

    Article  MathSciNet  Google Scholar 

  46. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24, 221–263 (1986)

    Article  MathSciNet  Google Scholar 

  47. Walter Wei, S.: Representing homotopy groups and spaces of maps by \(p\)-harmonic maps. Indiana Univ. Math. J. 47(2), 625–670 (1998)

    MathSciNet  MATH  Google Scholar 

  48. Wang, C.: Subelliptic harmonic maps from Carnot groups. Calc. Var. 18(1), 95–115 (2003)

    Article  MathSciNet  Google Scholar 

  49. Webster, S.M.: Pseudohermitian structures on a real hypersurface. J. Differ. Geom. 13, 25–41 (1978)

    Article  Google Scholar 

  50. Xu, C.-J., Zuily, C.: Higher regularity for quasilinear subelliptic systems. Calc. Var. PDEs 5(4), 323–344 (1997)

    Article  MathSciNet  Google Scholar 

  51. Zhou, Z.-R.: Uniqueness of subelliptic harmonic maps. Ann. Glob. Anal. Geom. 17, 581–594 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Sorin Dragomir acknowledges support from Italian P.R.I.N. 2015. Francesco Esposito is grateful for support from the joint Doctoral School of Università degli Studi della Basilicata (Potenza, Italy) and Università del Salento (Lecce, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Dragomir.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, YJ., Dragomir, S. & Esposito, F. Exponentially subelliptic harmonic maps from the Heisenberg group into a sphere. Calc. Var. 58, 125 (2019). https://doi.org/10.1007/s00526-019-1575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1575-3

Mathematics Subject Classification

Navigation