Skip to main content
Log in

Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we consider equations involving fully nonlinear non-local operators

$$\begin{aligned} F_{\alpha }(u(x)) \equiv C_{n,\alpha } PV \int _{{\mathbb {R}}^n} \frac{G(u(x)-u(z))}{|x-z|^{n+\alpha }} dz= f(x,u). \end{aligned}$$

We prove a maximum principle and obtain key ingredients for carrying on the method of moving planes, such as narrow region principle and decay at infinity. Then we establish radial symmetry and monotonicity for positive solutions to Dirichlet problems associated to such fully nonlinear fractional order equations in a unit ball and in the whole space, as well as non-existence of solutions on a half space. We believe that the methods developed here can be applied to a variety of problems involving fully nonlinear nonlocal operators. We also investigate the limit of this operator as \(\alpha {\rightarrow }2\) and show that

$$\begin{aligned} F_{\alpha }(u(x)) {\rightarrow }a(-\bigtriangleup u(x)) + b |{\bigtriangledown }u(x)|^2. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandle, C., Colorado, E., de Pablo, A., Sanchez, U.: A concave–convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. 143, 39–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, W., Fang, Y., Yang, R.: Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. (2015) 274(2015), 167–198

  3. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Li, C.: Methods on Nonlinear Elliptic Equations. AIMS Book Series 4. American Institute of Mathematical Sciences, Springfield, MO (2010)

  5. Chen, W., Li, C., Li, Y.: A direct method of moving planes for the fractional Laplacian. Adv. Math. 308, 404–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. CPAM 59, 330–343 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Chen, W., Li, C., Ou, B.: Qualitative properties of solutions for an integral equation. Discrete Contin. Dyn. Syst. 12, 347–354 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Chen, H., Lv, Z.: The properties of positive solutions to an integral system involving Wolff potential. Discrete Contin. Dyn. Syst. 34, 1879–1904 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. PDE 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62, 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, W., Zhu, J.: Indefinite fractional elliptic problem and Liouville theorems. J. Differ. Equ. 260, 4758–4785 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang, Y., Chen, W.: A Liouville type theorem for poly-harmonic Dirichlet problem in a half space. Adv. Math. 229, 2835–2867 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frank, R.L., Lieb, E.: Inversion positivityand the sharp Hardy–Littlewood–Sobolev inequality. Calc. Var. PDEs 39, 85–99 (2010)

    Article  MATH  Google Scholar 

  14. Hang, F.: On the integral systems related to Hardy–Littlewood–Sobolev inequality. Math. Res. Lett. 14, 373–383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, X., Lu, G., Zhu, J.: Characterization of balls in terms of Bessel-potential integral equation. J. Differ. Equ. 252, 1589–1602 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hang, F., Wang, X., Yan, X.: An integral equation in conformal geometry. Ann. H. Poincare Nonlinear Anal. 26, 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jarohs, S., Weth, T.: Symmetry via antisymmetric maximum principles in nonlocal problems of variable order. Ann. Mat. Pura Appl. 195, 273–291 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lei, Y.: Asymptotic properties of positive solutions of the Hardy–Sobolev type equations. J. Differ. Equ. 254, 1774–1799 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lei, Y., Lv, Z.: Axisymmetry of locally bounded solutions to an Euler–Lagrange system of the weighted Hardy–Littlewood–Sobolev inequality. Discrete Contin. Dyn. Syst. 33, 1987–2005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lei, Y., Li, C., Ma, C.: Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy–Littlewood–Sobolev system of integral equations. Calc. Var. PDEs 45, 43–61 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu, G., Zhu, J.: An overdetermined problem in Riesz-potential and fractional Laplacian. Nonlinear Anal. 75, 3036–3048 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, G., Zhu, J.: The axial symmetry and regularity of solutions to an integral equation in a half space. Pac. J. Math. 253, 455–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, G., Zhu, J.: Symmetry and regularity of extremals of an integral equation related to the Hardy–Sobolev inequality. Calc. Var. PDEs 42, 563–577 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, L., Chen, D.: A Liouville type theorem for an integral system. Commun. Pure Appl. Anal. 5, 855–859 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhuo, R., Chen, W., Cui, X., Yuan, Z.: Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete Contin. Dyn. Syst. 36, 1125–1141 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congming Li.

Additional information

Communicated by F. H. Lin.

Wenxiong Chen: Partially supported by the Simons Foundation Collaboration Grant for Mathematicians 245486.

Congming Li: Partially supported by NSFC 11571233 and NSF DMS-1405175.

Guanfeng Li: Partially supported by the Fundamental Research Funds for the Central Universities (PIRS OF HIT 201614).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, C. & Li, G. Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions. Calc. Var. 56, 29 (2017). https://doi.org/10.1007/s00526-017-1110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1110-3

Mathematics Subject Classification

Navigation