Skip to main content
Log in

Error estimates for approximations of nonhomogeneous nonlinear uniformly elliptic equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We obtain an error estimate between viscosity solutions and \(\delta \)-viscosity solutions of nonhomogeneous fully nonlinear uniformly elliptic equations. The main assumption, besides uniform ellipticity, is that the nonlinearity is Lipschitz-continuous in space with linear growth in the Hessian. We also establish a rate of convergence for monotone and consistent finite difference approximation schemes for such equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Barles, G., Jakobsen, E.R.: On the convergence rate of approximation schemes for Hamilton–Jacobi–Bellman equations. M2AN. Math. Model. Numer. Anal. 36(1), 33–54 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barles, G., Jakobsen, E.R.: Error bounds for monotone approximation schemes for Hamilton–Jacobi–Bellman equations. SIAM J. Numer. Anal. 43(2), 540–558 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4(3), 271–283 (1991)

    MATH  MathSciNet  Google Scholar 

  4. Bonnans, J.F., Maroso, S., Zidani, H.: Error estimates for stochastic differential games: the adverse stopping case. IMA J. Numer. Anal. 26(1), 188–212 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caffarelli, L.A., Cabre, X.: Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence (1995)

  6. Caffarelli, L.A., Souganidis, P.E.: A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Comm. Pure Appl. Math. 61(1), 1–17 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caffarelli, L., Souganidis, P.E.: Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media. Invent. Math. 180(2), 301–360 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ishii, H., Lions, P.-L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 83(1), 26–78 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jakobsen, E.R.: On error bounds for approximation schemes for non-convex degenerate elliptic equations. BIT 44(2), 269–285 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jakobsen, E.R.: On error bounds for monotone approximation schemes for multi-dimensional Isaacs equations. Asymptot. Anal. 49(3–4), 249–273 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Krylov, N.V.: On the rate of convergence of finite-difference approximations for Bellman’s equations. Algebra i Analiz 9(3), 245–256 (1997) translation in St. Petersburg Math. J. 9(3), 639–650 (1998)

  13. Krylov, N.V.: On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Relat. Fields 117(1), 1–16 (2000)

    Article  MATH  Google Scholar 

  14. Krylov, N.V.: The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients. Appl. Math. Optim. 52(3), 365–399 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kuo, H.J., Trudinger, N.S.: Linear elliptic difference inequalities with random coefficients. Math. Comp. 55(191), 37–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kuo, H.J., Trudinger, N.S.: Discrete methods for fully nonlinear elliptic equations. SIAM J. Numer. Anal. 29(1), 123–135 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Winter, N.: \(W^{2, p}\) and \(W^{1, p}\)-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations. Z. Anal. Anwend. 28(2), 129–164 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks her thesis advisor, Professor Takis Souganidis, for suggesting this problem and for his guidance and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Turanova.

Additional information

Communicated by L. Caffarelli.

Appendices

Appendix A

In this section we recall the comparison principle for viscosity solutions ([8, Theorem 3.3]) and several related results.

Proposition 10.1

(Comparison for viscosity solutions) Assume (F1). If \(u, v\in C(U)\) are, respectively, a subsolution and supersolution of \(F(D^2u, x)=f(x)\) in U with \(u\le v\) on \(\partial U\), then \(u\le v\) in U.

We now provide the (quite basic) proof of Lemma 2.6.

Proof of Lemma 2.6

Since \(c>0\), \(\bar{u}\) is a subsolution of \(F(D^2u, x)=f(x)\), so \(\bar{u}\le u\) on V by Theorem 10.1.

We denote \(R={{\mathrm{diam}}}V\), so there exists \(x_0\) such that \(V\subset B_R(x_0)\). For \(x\in V\) we define

$$\begin{aligned} w(x)=\bar{u}(x) -\frac{c}{\lambda }\left( \frac{|x-x_0|^2}{2}-\frac{R^2}{2}\right) . \end{aligned}$$

If \(x\in \partial V\), then \(w(x)\ge \bar{u}(x)\). And, since F is uniformly elliptic, we have

$$\begin{aligned} F(D^2w, x)=F\left( D^2\bar{u} -\frac{c}{\lambda }I,x\right) \le F(D^2\bar{u}, x) - c = f(x). \end{aligned}$$

Therefore, w is a supersolution of \(F(D^2u, x)=f(x)\) on V, so according to Theorem 10.1, we find that for all \(x\in V\),

$$\begin{aligned} u(x)\le w(x). \end{aligned}$$

We have \(w(x)\le \bar{u}(x)+\frac{cR^2}{2\lambda }\) for all \(x\in V\), which, together with the previous estimate, completes the proof of the lemma. \(\square \)

We state [8, Theorem 3.2], modified for our setting. This deep result was instrumental in establishing comparison for viscosity solutions; we use it in the proofs of Proposition 3.1 and Proposition 4.2.

Theorem 10.2

Suppose that \(u,v\in C(U)\) are viscosity solutions of \(F(D^2u, x)=f(x)\) and \(G(D^2v, x)=g(x)\) in U. Suppose that \((x_a, y_a)\in U\times U\) is a local maximum of

$$\begin{aligned} u(x) - v(y) - \frac{a}{2}\Bigg |x-y\Bigg |^2. \end{aligned}$$

Then there exist matrices X and Y that satisfy

$$\begin{aligned} -3a\left( \begin{array}{c@{\quad }c} I &{} 0 \\ 0 &{} I \\ \end{array} \right) \le \left( \begin{array}{c@{\quad }c} X &{} 0 \\ 0 &{} -Y \\ \end{array} \right) \le 3a\left( \begin{array}{c@{\quad }c} I &{} -I \\ -I &{} I \\ \end{array} \right) , \end{aligned}$$
(9.17)

and \(F(X, x_a)=f(x_a)\), \(G(Y, y_a)=g(y_a)\).

Together with Theorem 10.2, we use the following lemma of [9, Lemma III.1].

Lemma 10.3

There is a constant C(n) such that if (XY) are \(n\times n\) matrices that satisfy (9.17) for some constant a, then

$$\begin{aligned} ||X||,||Y|| \le C(n)\left\{ a^{1/2}||X-Y||^{1/2}+||X-Y||\right\} . \end{aligned}$$

Now we give the proof of Lemma 3.3.

Proof of Lemma 3.3

For any \(x\in V\), we have

$$\begin{aligned} \sup _{ y \in V} \left( v(x)-w(y) - \frac{a}{2}|x-y|^2\right)&= v(x) -\inf _{ y \in V} \left( w(y) + \frac{a}{2}|x-y|^2\right) \\&\le v(x) - w(x) + 2||Dw||_{L^{\infty }(V)}^2a^{-1}, \end{aligned}$$

where the inequality follows from the properties of inf-convolutions. Since \(v=w\) on the boundary of V, we find

$$\begin{aligned} \sup _{ y \in B_1, x\in \partial V} \left( v(x)-w(y) - \frac{a}{2}|x-y|^2 \right) \le 2||Dw||_{L^{\infty }(V)}^2a^{-1}. \end{aligned}$$

Similarly, if \(y\in \partial V\), then

$$\begin{aligned} \sup _{ x \in V, y\in \partial V} \left( v(x)-w(y) - \frac{a}{2}|x-y|^2 \right) \le 2||D v||_{L^{\infty }(V)}^2a^{-1}. \end{aligned}$$

These two bounds imply the first claim of the lemma. We now proceed to give the proof of the second claim. By the definition of \((x_a,y_a)\) as a point at which the supremum is achieved, we have, for any \((x,y)\in V\times V\),

$$\begin{aligned} u(x_a)-v(y_a)-\frac{a}{2}\Bigg |x_a-y_a\Bigg |^2\ge u(x)-v(y)-\frac{a}{2}|x-y|^2, \end{aligned}$$

so in particular, this inequality holds with \((x,y)=(x_a,y_a)\). This implies

$$\begin{aligned} u(x_a) -\frac{a}{2}\Bigg |x_a-y_a\Bigg |^2\ge u(y_a), \end{aligned}$$

so we find

$$\begin{aligned} \frac{a}{2}\Bigg |x_a-y_a\Bigg |^2\le u(x_a)-u(y_a) \le ||Du||_{L^{\infty }(V)}|x_a-y_a|, \end{aligned}$$

from which we easily conclude \(|x_a-y_a|\le 2a^{-1}||Du||_{L^{\infty }(V)}\). We find \(|x_a-y_a|\le 2a^{-1}||Dv||_{L^{\infty }(V)}\) in a similar way. \(\square \)

Appendix B

We summarize the basic properties of inf and sup convolutions that we use in this paper. We refer the reader to [7, Proposition 5.3] and [5, Lemma 5.2] for the proof of items (1)–(3). The proof of item (4) is very similar to that of [7, Proposition 5.5] and we omit it.

Proposition 10.4

Assume \(u\in C(U)\).

  1. (1)

    In the sense of distributions, \(D^2u^{+,\theta }(x)\ge -\theta ^{-1}I\) and \(D^2u^{-,\theta }(x)\le \theta ^{-1}I\) for all \(x\in U\).

  2. (2)

    If \(u\in C^{\eta }(U)\), for some \(\eta \in (0,1]\), then for all \(x\in U\),

    $$\begin{aligned} 0\le (u^{+,\theta }-u)(x)&\le [u]_{C^{0,\eta }(U)}(2\theta )^{\frac{\eta }{2-\eta }} , \text { and}\\ 0\le (u-u^{-,\theta })(x)&\le [u]_{C^{0,\eta }(U)}(2\theta )^{\frac{\eta }{2-\eta }} . \end{aligned}$$
  3. (3)

    Define \(\nu = 4\theta ^{1/2}||u||_{L^{\infty }(U)}^{1/2}\). If u is a subsolution of (1.1) in U, then \(u^{\theta , +}\) is a subsolution of

    $$\begin{aligned} F^\nu (D^2u, x)=f_\nu (x) \text { in } U^{\theta }_\delta ; \end{aligned}$$

    if u is a supersolution of (1.1) in U, then \(u^{\theta , -}\) is a supersolution of

    $$\begin{aligned} F_\nu (D^2u, x)=f^\nu (x) \text { in } U^{\theta }_\delta . \end{aligned}$$

    (The perturbed nonlinearities \(F^\nu \) and \(F_\nu \), as well as \(f_\nu \) and \(f^\nu \), are defined in Definition 4.1).

  4. (4)

    Assume that \(v\in C(U)\). Let \(\nu = 4\theta ^{1/2}||v||_{L^{\infty }(U)}^{1/2}\). If v is a \(\delta \)-subsolution of (1.1) in U, then \(v^{\theta , +}\) is a \(\delta \)-subsolution of

    $$\begin{aligned} F^\nu (D^2v, x)=f_\nu (x) \text { in } U^{\theta }_\delta ; \end{aligned}$$

    if v is a \(\delta \)-supersolution of (1.1) in U, then \(v^{\theta , -}\) is a \(\delta \)-supersolution of

    $$\begin{aligned} F_\nu (D^2v, x)=f^\nu (x) \text { in } U^{\theta }_\delta . \end{aligned}$$

1.1 B.1 Inf and sup convolutions of mesh functions

We summarize some basic properties of inf and sup convolutions of mesh functions.

Proposition 10.5

Assume \(v\in C^{0,\eta }(U_h)\).

  1. (1)

    If \(x^{*}\in U_h\) denotes a point where the supremum (resp. infimum) is achieved in the definition of \(v_h^{\theta , +}(x)\) (resp. \(v_h^{\theta , -}(x)\)), then

    $$\begin{aligned} |x-x^{*}|\le 4||v_h||_{L^{\infty }(U_h)}^{1/2}\theta ^{1/2}+\sqrt{n}h. \end{aligned}$$
  2. (2)

    In the sense of distributions, \(D^2v^{+,\theta }(x)\ge -\theta ^{-1}I\) and \(D^2v^{-,\theta }(x)\le \theta ^{-1}I\) for all \(x\in U\).

  3. (3)

    For all \(x\in U_h\), we have \(v^{-,\theta }(x)\le v(x)\le v^{+,\theta }(x)\).

  4. (4)

    There exists a constant C that depends on \([v]_{C^{0,\eta }(U)}\) such that if \(x\in U\) and y is a neighboring mesh point to x, then,

    $$\begin{aligned}&v^{+,\theta }(y)-C\theta ^{\frac{\eta }{2-\eta }} \le v(x)\le v^{-,\theta }(y)+C\theta ^{\frac{\eta }{2-\eta }} . \end{aligned}$$

Proof of (1) of Proposition 10.5

For \(x\in U\), we denote by \(x_h\) an element of the mesh that is closest to x. Note \(|x-x_h|\le \sqrt{n}h\).

Let \(x^{*}\in U_h\) be a point where the supremum is achieved in the definition of \(v_h^{\theta , +}(x)\). Then

$$\begin{aligned} v_h(x^{*})-\frac{|x-x^{*}|^2}{2\theta }\ge v_h(x_h) - \frac{|x_h-x|^2}{2\theta }. \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{|x-x^{*}|^2}{2\theta } \le v_h(x^{*}) - v_h(x_h) +\frac{nh^2}{2\theta } \le 2||v_h||_{L^{\infty }(U_h)} +\frac{nh^2}{2\theta }, \end{aligned}$$

which easily implies the desired bound. The proof for \(v_h^{\theta , -}(x)\) is very similar. \(\square \)

We refer the reader to [6, Proposition 2.3] for the proof of the rest of Proposition 10.5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turanova, O. Error estimates for approximations of nonhomogeneous nonlinear uniformly elliptic equations. Calc. Var. 54, 2939–2983 (2015). https://doi.org/10.1007/s00526-015-0890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0890-6

Keywords

Mathematics Subject Classification

Navigation