Skip to main content

Advertisement

Log in

Nonlocal quantitative isoperimetric inequalities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We show a quantitative-type isoperimetric inequality for fractional perimeters where the deficit of the \(t\)-perimeter, up to multiplicative constants, controls from above that of the \(s\)-perimeter, with \(s\) smaller than \(t\). To do this we consider a problem of independent interest: we characterize the volume-constrained minimizers of a nonlocal free energy given by the difference of the \(t\)-perimeter and the \(s\)-perimeter. In particular, we show that balls are the unique minimizers if the volume is sufficiently small, depending on \(t-s\), while the existence vs. nonexistence of minimizers for large volumes remains open. We also consider the corresponding isoperimetric problem and prove existence and regularity of minimizers for all \(s,\,t\). When \(s=0\) this problem reduces to the fractional isoperimetric problem, for which it is well known that balls are the only minimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Using [10], one can actually show that the dimension is at most \(N-8\) even for \(t\) sufficiently close to \(1\).

References

  1. Ambrosio, L., Caselles, V., Masnou, S., Morel, J.-M.: Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3(1), 39–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., De Philippis, G., Martinazzi, L.: \(\Gamma \)-convergence of nonlocal perimeter functionals. Manuscr. Math. 134, 377–403 (2011)

    Article  MATH  Google Scholar 

  3. Bombieri, E.: Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal. 78, 99–130 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonacini, M., Cristoferi, R.: Local and global minimality results for a nonlocal isoperimetric problem on \(\mathbb{R}^N\). SIAM J. Math. Anal. (2015, to appear)

  5. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations, a volume in honor of A. Bensoussan’s 60th birthday. IOS Press, Amsterdam, pp. 439–455 (2001)

  6. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \(W^{s, p}\) when \(s\nearrow 1\) and applications. J. Anal. Math. 87, 77–101 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brasco, L., Lindgren, E., Parini, E.: The fractional Cheeger problem. Interfaces Free Bound 16(3), 419–458 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caffarelli, L., Roquejoffre, J.M., Savin, O.: Non-local minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)

    MATH  MathSciNet  Google Scholar 

  9. Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41(1–2), 203–340 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caffarelli, L., Valdinoci, E.: Regularity properties of nonlocal minimal surfaces via limiting arguments. Adv. Math. 248, 843–871 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Caputo, M.C., Guillen, N.: Regularity for non-local almost minimal boundaries and applications (2011, preprint). http://arxiv.org/pdf/1003.2470

  12. Cicalese, M., Spadaro, E.: Droplet minimizers of an isoperimetric problem with longe-range interactions. Commun. Pure Appl. Math. 66, 1298–1333 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dávila, J.: On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15(4), 519–527 (2002)

    Article  MATH  Google Scholar 

  14. Dávila, J., del Pino, M., Wei, J.: Nonlocal \(s\)-minimal surfaces and Lawson cones (2014, preprint). http://arxiv.org/abs/1402.4173

  15. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s quide to the frctional Sobolev Spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dipierro, S., Figalli, A., Palatucci, G., Valdinoci, E.: Asymptotics of the s-perimeter as \(s\searrow 0\). Discrete Contin. Dyn. Syst. 33(7), 2777–2790 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336(1), 441–507 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  18. Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy–Lieb–Thiring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21, 925–950 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fuglede, B.: Stability in the isoperimetric problem for convex or nearly spherical domains in \(\mathbb{R}^n\). Trans. Am. Math. Soc. 314, 619–638 (1989)

    MATH  MathSciNet  Google Scholar 

  21. Fusco, N., Julin, V.: On the regularity of critical and minimal sets of a free interface problem. Interfaces Free Bound (to appear)

  22. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fusco, N., Millot, V., Morini, M.: A quantitative isoperimetric inequality for fractional perimeters. J. Funct. Anal. 26, 697–715 (2011)

    Article  MathSciNet  Google Scholar 

  24. Goldman, M., Novaga, M.: Volume-constrained minimizers for the prescribed curvature problem in periodic media. Calc. Var. Partial Differ. Equ. 44(3), 297–318 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Goldman, M., Novaga, M., Ruffini, B.: Existence and stability for a non-local isoperimetric model of charged liquid drops. Arch. Ration. Mech. Anal. 217(1), 1–36 (2015)

  26. Julin, V.: Isoperimetric problem with a Coulombic repulsive term. Indiana Univ. Math. J Arch. Ration. Mech. Anal. 217(1), 1–36 (2015)

    Article  MathSciNet  Google Scholar 

  27. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing nonlocal term I: the planar case. Commun. Pure Appl. Math. 66, 1129–1162 (2013)

    Article  MATH  Google Scholar 

  28. Knüpfer, H., Muratov, C.B.: On an isoperimetric problem with a competing nonlocal term II: the general case. Commun. Pure Appl. Math. 67(12), 1974–1994 (2014). doi:10.1002/cpa.21479

    Article  MATH  Google Scholar 

  29. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012)

  30. Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195(2), 230–238 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Samko, S.G.: Hypersingular Integrals and their Applications. Analytical Methods and Special Functions. Taylor & Francis Ltd, London (2002)

    Google Scholar 

  32. Savin, O., Valdinoci, E.: \(\Gamma \)-convergence for nonlocal phase transitions. Ann. Inst. H. Poincaré Anal. Non Linèaire 29, 479–500 (2012)

  33. Savin, O., Valdinoci, E.: Regularity of nonlocal minimal cones in dimension \(2\). Calc. Var. Partial Differ. Equ. 48(1–2), 33–39 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tamanini, I.: Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math. 334, 27–39 (1982)

    MATH  MathSciNet  Google Scholar 

  35. Visintin, A.: Generalized coarea formula and fractal sets. Japan J. Indust. Appl. Math. 8(2), 175–201 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are members of the Italian CNR-GNAMPA, whose support they gratefully acknowledge. M.N. and E.V. have been partially supported by the ERC grant \(\epsilon \) “Elliptic Pde’s and Symmetry of Interfaces and Layers for Odd Nonlinearities”. B.R. was partially supported by the project ANR-12-BS01-0014-01 “Geometrya”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Novaga.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Castro, A., Novaga, M., Ruffini, B. et al. Nonlocal quantitative isoperimetric inequalities. Calc. Var. 54, 2421–2464 (2015). https://doi.org/10.1007/s00526-015-0870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0870-x

Mathematics Subject Classification

Navigation