Skip to main content
Log in

Fractional semilinear Neumann problems arising from a fractional Keller–Segel model

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the following fractional semilinear Neumann problem on a smooth bounded domain \(\Omega \subset \mathbb {R}^n\), \(n\ge 2\),

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\varepsilon \Delta )^{1/2}u+u=u^{p},&{}\quad \hbox {in}~\Omega ,\\ \partial _\nu u=0,&{}\quad \hbox {on}~\partial \Omega ,\\ u>0,&{}\quad \hbox {in}~\Omega , \end{array}\right. } \end{aligned}$$

where \(\varepsilon >0\) and \(1<p<(n+1)/(n-1)\). This is the fractional version of the semilinear Neumann problem studied by Lin–Ni–Takagi in the late 1980’s. The problem arises by considering steady states of the Keller–Segel model with nonlocal chemical concentration diffusion. Using the semigroup language for the extension method and variational techniques, we prove existence of nonconstant smooth solutions for small \(\varepsilon \), which are obtained by minimizing a suitable energy functional. In the case of large \(\varepsilon \) we obtain nonexistence of nonconstant solutions. It is also shown that as \(\varepsilon \rightarrow 0\) the solutions \(u_\varepsilon \) tend to zero in measure on \(\Omega \), while they form spikes in \(\overline{\Omega }\). The regularity estimates of the fractional Neumann Laplacian that we develop here are essential for the analysis. The latter results are of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A., Sobolev Spaces, vol. 65. Academic Press, New York (1975). (Pure and Applied Mathematics)

  2. Alves, M.O., Oliva, S.M.: An extension problem related to the square root of the Laplacian with Neumann boundary condition. Electron. J. Differ. Equ. 2014, 18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

  4. Cabré, X., Solà-Morales, J.: Layer solutions in a half-space for boundary reactions. Commun. Pure Appl. Math. 58, 1678–1732 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L.: Free boundary problems for fractional powers of the Laplacian. In: A Great Mathematician of the Nineteenth Century. Papers in Honor of Eugenio Beltrami (1835–1900) (Italian), Ist. Lombardo Accad. Sci. Lett. Incontr. Studio, LED-Ed. Univ. Lett. Econ. Diritto, Milan, vol. 39, pp. 273–286 (2007)

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171, 425–461 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(2), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Campanato, S.: Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa 17(3), 175–188 (1963)

    MathSciNet  MATH  Google Scholar 

  11. Escudero, C.: The fractional Keller–Segel model. Nonlinearity 19, 2909–2918 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

  13. Galé, J.E., Miana, P.J., Stinga, P.R.: Extension problem and fractional operators: semigroups and wave equations. J. Evol. Equ. 13, 343–368 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equ. 6, 883–901 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001)

  16. Gyrya, P., Saloff-Coste, L.: Neumann and Dirichlet heat kernels in inner uniform domains. Astérisque 336, viii+144 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Harboure, E.: Spaces of smooth functions. In: Advanced Courses of Mathematical Analysis, vol. III, pp. 67–85. World Sci. Publ., Hackensack (2008)

  18. Hu, B.: Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition. Differ. Integral Equ. 7, 301–313 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Imbert, C., Mellet, A.: Existence of solutions for a higher order non-local equation appearing in crack dynamics. Nonlinearity 24, 3487–3514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Y., Zhang, L.: Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations. J. Anal. Math. 90, 27–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, C.-S., Ni, W.-M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72, 1–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Montefusco, E., Pellacci, B., Verzini, G.: Fractional diffusion with Neumann boundary conditions: the logistic equation. Discret. Contin. Dyn. Syst. Ser. B 18, 2175–2202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ni, W.-M., Takagi, I.: On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. Trans. Am. Math. Soc. 297, 351–368 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ni, W.-M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44, 819–851 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ni, W.-M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saloff-Coste, L.: The heat kernel and its estimates. Adv. Stud. Pure Math. Math. Soc. Jpn 57, 405–436 (2010)

  27. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. PhD thesis, The University of Texas at Austin, USA (2005)

  28. Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55, 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970)

    MATH  Google Scholar 

  31. Stinga, P.R.: Fractional powers of second order partial differential operators: extension problem and regularity theory. PhD thesis, Universidad Autónoma de Madrid, Spain (2010)

  32. Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35, 2092–2122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, F.-Y., Yan, L.: Gradient Estimate on the Neumann Semigroup and Applications, p. 12 (2010). arXiv:1009.1965v2

  34. Wang, F.-Y., Yan, L.: Gradient estimate on convex domains and applications. Proc. Am. Math. Soc. 141, 1067–1081 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, J.: Global heat kernel estimates. Pac. J. Math. 178, 377–398 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was motivated from discussions between the second author and Christian Kuehn. We thank Laurent Saloff-Coste and Jiaping Wang for very interesting discussions regarding the Neumann heat kernel, and to Luis Caffarelli for pleasant conversations about this work. We are also grateful to Benedetta Pellacci for pointing out a computational mistake in an earlier version of this paper, as well as to the referee for very useful detailed remarks that helped us to improve the presentation of the results. The first author is grateful to the Dipartimento di Ingegneria at Università degli Studi di Napoli “Parthenope” for their kind hospitality during several visits. The authors have been partially supported by MTM2011-28149-C02-01 from Spanish Government and the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM), Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Raúl Stinga.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stinga, P.R., Volzone, B. Fractional semilinear Neumann problems arising from a fractional Keller–Segel model. Calc. Var. 54, 1009–1042 (2015). https://doi.org/10.1007/s00526-014-0815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0815-9

Mathematics Subject Classification

Navigation