Skip to main content

Advertisement

Log in

Convex bodies with pinched Mahler volume under the centro-affine normal flows

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of smooth, origin-symmetric, strictly convex bodies under the centro-affine normal flows. By means of a stability version of the Blaschke–Santaló inequality, we obtain regularity of the solutions provided that initial convex bodies have almost maximum Mahler volume. We prove that suitably rescaled solutions converge sequentially to the unit ball in the \(\mathcal {C}^{\infty }\) topology modulo \(SL(n+1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandroni, R., Sinestrari, C.: Evolution of hypersurfaces by powers of the scalar curvature. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9, 541–571 (2010)

    MATH  MathSciNet  Google Scholar 

  2. Andrews, B.: Harnack inequalities for evolving hypersrufaces. Math. Z. 217, 179–197 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andrews, B.: Contraction of convex hypersurfaces by their affine normal. J. Differ. Geom. 43, 207–230 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138(1), 151–161 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Andrews, B.: Motion of hypersurfaces by Gauss curvature. Pacif. J. Math. 195(1), 1–34 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Andrews, B., Chen, X.: Surfaces moving by powers of Gauss curvature. Pure Appl. Math. Q. 8(4), 825–834 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Andrews, B., McCoy, J.: Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature. Trans. Am. Math. Soc. 364(7), 3427–3447 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Andrews, B., McCoy, J., Zheng, Y.: Contracting convex hypersurfaces by curvature. Calc. Var. Partial Differ. Equ. 47(3–4), 611–665 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Angenent, S., Sapiro, G., Tannenbaum, A.: On the heat equation for non-convex curves. J. Am. Math. Soc. 11(3), 601–634 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ball, B., Böröczky, K.J.: Stability of some versions of the Prékopa–Leindler inequality. Monatsh. Math. 163, 1–14 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Blaschke, W.: Über affine Geometrie I. Isoperimetrische Eigenschaften von Ellipse und Ellipsoid. Leipz. Ber. 68, 217–239 (1916)

  12. Cabezas-Rivas, E., Sinestrari, C.: Volume-preserving flow by powers of the \(m\)-th mean curvature. Calc. Var. Partial Differ. Equ. 38, 441–469 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, S.: Classifying convex compact ancient solutions to the affine curve shortening flow, J. Geom. Anal. (2013). doi: 10.1007/s12220-013-9456-z

  14. Chow, B.: Deforming convex hypersurfaces by the \(n\)-th root of the Gaussian curvature. J. Differ. Geom. 22(1), 117–138 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guan, P., Ni, L.: Entropy and a convergence theorem for Gauss curvature flow in high dimension, preprint (2013). http://arxiv.org/abs/1306.0625

  16. Ivaki, M.N.: Centro-affine curvature flows on centrally symmetric convex curves. Trans. Am. Math. Soc. 366(11), 5671–5692 (2014)

  17. Ivaki, M.N.: Stability of the \(p\)-affine isoperimetric inequality. J. Geom. Anal. 24(4), 1898–1911 (2014). doi: 10.1007/s12220-013-9401-1

    Article  MATH  MathSciNet  Google Scholar 

  18. Ivaki, M.N.: The planar Busemann-Petty centroid inequality and its stability. Trans. Am. Math. Soc. (2014). http://arxiv.org/abs/1312.4834v6 (to appear)

  19. Ivaki, M.N.: Centro-affine normal flows on curves: Harnack estimates and ancient solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014). doi:10.1016/j.anihpc.2014.07.001

  20. Ivaki, M.N.: Stability of the Blaschke-Santaló inequality in the plane. Monatsh. Math. (2014). doi:10.1007/s00605-014-0651-1

  21. Ivaki, M.N.: A note on the Gauss curvature flow, preprint (2014). http://arxiv.org/abs/1409.2629v2

  22. Ivaki, M.N.: Classification of compact convex ancient solutions of the planar affine normal flow. J. Geom. Anal. (2014) (to appear)

  23. Ivaki, M.N., Stancu A.: Volume preserving centro-affine normal flows, Commun. Anal. Geom. (2013) doi:10.4310/CAG.2013.v21.n3.a9

  24. Krylov, N.V., Safonov, V.M.: A certain property of solutions of parabolic equations with measurable coefficients, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 44(1), 161–175 (1980)

    MathSciNet  Google Scholar 

  25. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations in domains. Izvestiya: Math. 20(3), 459–492 (1983)

    Article  MATH  Google Scholar 

  26. Krylov, N.V.: Nonlinear Elliptic and Parabolic Equations of the Second Order. D. Reidel Publishing Co., Dordrecht (1987)

    Book  MATH  Google Scholar 

  27. Loftin, J., Tsui, M.P.: Ancient solutions of the affine normal flow. J. Differ. Geom. 78, 113–162 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lutwak, E.: The Brunn–Minkowski–Fiery theory II:affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sapiro, G., Tannenbaum, A.: On affine plane curve evolution. J. Funct. Anal. 119, 79–120 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schnürer, O.C.: Surfaces contracting with speed \(|A|^2\). J. Differ. Geom. 71(3), 347–363 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schulze, F.: Convexity estimates for flows by powers of the mean curvature. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(2), 261–277 (2006)

    MATH  MathSciNet  Google Scholar 

  32. Smoczyk, K.: Starshaped hypersurfaces and the mean curvature flow. Manuscr. Math. 95(2), 225–236 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Stancu, A.: Centro-affine invariants for smooth convex bodies. Int. Math. Res. Not. IMRN (2011). doi:10.1093/imrn/rnr110

  34. Tsai, H.D.: \(C^{2,\alpha }\) estimate of a parabolic Monge–Ampère equation on \(\mathbb{S}^n\). Proc. Am. Math. Soc. 131(10), 3067–3074 (2003)

    Article  MATH  Google Scholar 

  35. Tso, K.: Deforming a hypersurface by its Gauss-Kronecker curvature. Commun. Pure Appl. Math. 38, 867–882 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wu, C., Tian, D., Li, G.: Forced flows by powers of the \(m\)-th mean curvature. Armen. J. Math. 3, 61–91 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am indebted to the referees whose comments and suggestions have led to improvements of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad N. Ivaki.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivaki, M.N. Convex bodies with pinched Mahler volume under the centro-affine normal flows. Calc. Var. 54, 831–846 (2015). https://doi.org/10.1007/s00526-014-0807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0807-9

Mathematics Subject Classification

Navigation