Skip to main content
Log in

Multiple solutions to logarithmic Schrödinger equations with periodic potential

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

An Erratum to this article was published on 13 April 2017

Abstract

We study a class of logarithmic Schrödinger equations with periodic potential which come from physically relevant situations and obtain the existence of infinitely many geometrically distinct solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal. 7, 981–1012 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benci, V.: On critical point theory for indefinite functionals in the presence of symmetries. Trans. Am. Math. Soc. 274, 533–572 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Białynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)

    Article  MathSciNet  Google Scholar 

  4. Białynicki-Birula, I., Mycielski, J.: Gaussons: solitons of the logarithmic Schrödinger equation. Phys. Scr. 20, 539–544 (1979). (Special issue on solitons in physics)

    Article  MATH  Google Scholar 

  5. Białynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Polon. Sci. Cl. III 23, 461 (1975)

    MathSciNet  Google Scholar 

  6. Campa, I., Degiovanni, M.: Subdifferential calculus and nonsmooth critical point theory. SIAM J. Optim. 10, 1020–1048 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. 7, 1127–1140 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations. Textos de Métodos Matemáticos, vol. 26. Universidade Federal do Rio de Janeiro (1996)

  9. Cazenave, T., Haraux, A.: Équations d’évolution avec non linéarité logarithmique. Ann. Fac. Sci. Toulouse Math. 2, 21–51 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corvellec, J.N., Degiovanni, M., Marzocchi, M.: Deformation properties for continuous functionals and critical point theory. Topol. Methods Nonlinear Anal. 1, 151–171 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16, 1350032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Degiovanni, M., Zani, S.: Multiple solutions of semilinear elliptic equations with one-sided growth conditions, nonlinear operator theory. Math. Comput. Model. 32, 1377–1393 (2000)

    Article  MATH  Google Scholar 

  13. Del Pino, M., Dolbeault, J.: The optimal Euclidean \(L^p\)-Sobolev logarithmic inequality. J. Funct. Anal. 197, 151–161 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guerrero, P., López, J.L., Nieto, J.: Global \(H^1\) solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal. Real World Appl. 11, 79–87 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. AMS, Providence (2001)

  16. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

  17. Struwe, M.: Variational Methods. Springer, New York (1990)

    Book  MATH  Google Scholar 

  18. Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré, Anal. Non Linéaire 3, 77–109 (1986)

  19. Szulkin, A., Weth, T.: Ground state solutions for some indefinite problems. J. Funct. Anal. 257, 3802–3822 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vázquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  22. Zloshchastiev, K.G.: Logarithmic nonlinearity in theories of quantum gravity: origin of time and observational consequences. Gravit. Cosmol. 16, 288–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author would like to thank Prof.Iwo Białynicki-Birula from the Center for Theoretical Physics PAN, Warsaw, for useful comments about the relevance of Eq. (1.1) from the physical point of view.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Squassina.

Additional information

Communicated by P. Rabinowitz.

The first author was supported by the MIUR project: “Variational and Topological Methods in the Study of Nonlinear Phenomena”. The work was partially carried out during a stay of M. Squassina in Stockholm. He would like to express his gratitude to the Department of Mathematics of Stockholm University for the warm hospitality.

An erratum to this article is available at http://dx.doi.org/10.1007/s00526-017-1127-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squassina, M., Szulkin, A. Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc. Var. 54, 585–597 (2015). https://doi.org/10.1007/s00526-014-0796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0796-8

Mathematics Subject Classification

Navigation