Skip to main content
Log in

Variational analysis of a mean curvature flow action functional

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the reduced Allen–Cahn action functional, which arises as the sharp interface limit of the Allen–Cahn action functional and can be understood as a formal action functional for a stochastically perturbed mean curvature flow. For suitable evolutions of (generalized) hypersurfaces this functional consists of the integral over time and space of the sum of the squares of the mean curvature and of the velocity vectors. Given initial and final conditions, we investigate the associated action minimization problem, for which we propose a weak formulation, and within the latter we prove compactness and lower-semicontinuity properties of a suitably generalized action functional. Furthermore, we derive the Euler–Lagrange equation for smooth stationary trajectories and investigate some related conserved quantities. To conclude, we analyze the explicit case in which the initial and final data are concentric spheres. In this particular situation we characterize the properties of the minimizing rotationally symmetric trajectory in dependence of the given time span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allard, W.K.: First variation of a varifold. Ann. Math. 2(95), 417–491 (1972)

    Article  MathSciNet  Google Scholar 

  2. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  3. Bellettini, G., Mugnai, L.: Some aspects of the variational nature of mean curvature flow. J. Eur. Math. Soc. (JEMS). 10(4), 1013–1036 (2008)

    Google Scholar 

  4. Brakke K.: The Motion of a Surface by its Mean Curvature. Princeton University Press (1978)

  5. de Mottoni, Piero, Schatzman, Michelle: Development of interfaces in \({ R}^N\). Proc. Roy. Soc. Edinb. Sect. A 116(3–4), 207–220 (1990)

    Article  MATH  Google Scholar 

  6. E, W., Ren, W., Vanden-Eijnden, E.: Minimum action method for the study of rare events. Commun. Pure Appl. Math. 57(5), 637–656 (2004)

    Google Scholar 

  7. Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097–1123 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Faris, W.G., Jona-Lasinio, G.: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15(10), 3025–3055 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feng, J.: Large deviation for diffusions and Hamilton-Jacobi equation in Hilbert spaces. Ann. Probab. 34(1), 321–385 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fogedby, H.C., Hertz, J., Svane, A.: Domain wall propagation and nucleation in a metastable two-level system. Phys. Rev. E. 70, 031105-1-031105-17 (2004)

    Google Scholar 

  11. Hutchinson, J.E.: Second fundamental form for varifolds and the existence of surfaces minimizing curvature. Indiana Univ. Math. J. 35, 45–71 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ilmanen, T.: Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. J. Diff. Geom. 38, 417–461 (1993)

    MATH  MathSciNet  Google Scholar 

  13. Kohn, R., Otto, F., Reznikoff, M.G., Vanden-Eijnden, E.: Action minimization and sharp-interface limits for the stochastic Allen-Cahn equation. Commun. Pure Appl. Math. 60(3), 393–438 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kohn, R.V., Reznikoff, M.G., Tonegawa, Y.: Sharp-interface limit of the Allen-Cahn action functional in one space dimension. Calc. Var. Part. Differ. Equ. 25(4), 503–534 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Diff. Geom. 57, 409–441 (2001)

    MATH  Google Scholar 

  16. Kuwert, E., Schätzle, R.: Removability of point singularities of Willmore surfaces. Ann. Math. 2. 160(1), 315–357 (2004)

    Google Scholar 

  17. Marques, F.C., Neves, A.: Min-Max Theory and the Willmore conjecture. ArXiv e-prints (2012)

  18. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8(1), 1–48 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Moser, R.: A generalization of Rellich’s theorem and regularity of varifolds minimizing curvature. Preprint. http://www.mis.mpg.de/publications/preprints/2001/prepr2001-72.html (2001)

  20. Mugnai, L., Röger, M.: The Allen-Cahn action functional in higher dimensions. Interfaces Free Bound. 10(1), 45–78 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Okabe, S.: The variational problem for a certain space-time functional defined on planar closed curves. J. Differ. Equ. 252(10), 5155–5184 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rivière, T.: Analysis aspects of Willmore surfaces. Invent. Math. 174(1), 1–45 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Röger, M., Tonegawa, Y.: Convergence of phase-field approximations to the Gibbs-Thomson law. Calc. Var. Part. Differ. Equ. 32(1), 111–136 (2008)

    Article  MATH  Google Scholar 

  24. Rubinstein, J., Sternberg, P., Keller, J.B.: Fast reaction, slow diffusion, and curve shortening. SIAM J. Appl. Math. 49(1), 116–133 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Simon, L.: In: proceedings of the center for mathematics analysis. Lectures on Geometric Measure Theory, vol. 3, Australian National University, Canberra (1983)

  26. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 2, 281–326 (1993)

    Google Scholar 

  27. Simonett, Gieri: The Willmore flow near spheres. Differ. Integr. Equ. 14(8), 1005–1014 (2001)

    MATH  MathSciNet  Google Scholar 

  28. Willmore, T.J.: Note on embedded surfaces. Ann. Stiint. Univ. Al. I. Cuza, Iaşi, Sect. I a Mat. (N.S.). 11B, 493–496 (1965)

Download references

Acknowledgments

We thank Stephan Luckhaus for sharing his insight on weak velocity formulations for evolving measures and Luca Mugnai for stimulating discussions on the subject. This work was supported by the DFG Forschergruppe 718 Analysis and Stochastics in Complex Physical Systems

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annibale Magni.

Additional information

Communicated by L. Ambrosio.

Appendix. Notations and results from differential geometry

Appendix. Notations and results from differential geometry

Let \(M\) be an \(n\)-dimensional smooth differentiable manifold without boundary and consider a smooth immersion \(\phi : M \rightarrow {\mathbb {R}}^{n+1}\). Denoting with \((x^1 ,\ldots , x^n)\) a local coordinate system on \(M\) and \((\frac{\partial }{\partial x_1} ,\ldots , \frac{\partial }{\partial x_n}) : = (e_1 ,\ldots , e_n)\) the associated base for the tangent space, the Riemannian metric \(g\) induced by \(\phi \) on \(M\) via pullback reads as follows:

$$\begin{aligned} g_{ij} := \partial _i \phi \cdot \partial _j \phi \,, \end{aligned}$$
(7.1)

where \(\cdot \) denotes the standard scalar product in \({\mathbb {R}}^{n+1}\). We will denote with \(\nabla \) the covariant derivative associated to the Levi-Civita connection of \(g\).

Since \(\phi (M)\) has codimension one in \({\mathbb {R}}^{n+1}\), it follows that \(M\) is orientable and at each point of \(\phi (M)\) there is a well defined smooth inner unit normal vector field which we call \(\nu \). We define the second fundamental form of \(\phi (M)\) according to

$$\begin{aligned} {\mathrm A}= ({\mathrm h}_{ij})_{ij} := (\nu \cdot \partial ^2_{ij} \phi )_{ij} \,, \end{aligned}$$
(7.2)

which implies that \({\mathrm A}\) is a symmetric 2-tensor on \(\phi (M)\).

The mean curvature of the couple \((M,\phi )\) is defined as the trace of the second fundamental form and is denoted by \(\vec {{\mathrm H}}\), while the scalar mean curvature is given by \({\mathrm H}:= \varvec{{\mathrm H}} \cdot \nu \).

Within this setting, the Gauss-Weingarten relations read

$$\begin{aligned} \partial ^2_{ij} \phi = \Gamma ^k_{ij} \partial _k \phi + {\mathrm h}_{ij} \nu \quad \mathrm and \quad \partial _i \nu = - {\mathrm h}_{ik} g^{kl} \partial _l \phi \,. \end{aligned}$$
(7.3)

The Bianchi identities for the curvature tensor of the immersed manifold are equivalent to

$$\begin{aligned} \nabla _i {\mathrm h}_{jk} = \nabla _j {\mathrm h}_{ik} \,. \end{aligned}$$
(7.4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magni, A., Röger, M. Variational analysis of a mean curvature flow action functional. Calc. Var. 52, 609–639 (2015). https://doi.org/10.1007/s00526-014-0726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0726-9

Mathematics Subject Classification (2010)

Navigation