Skip to main content
Log in

Stationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maxima

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study positive bound states for the equation \({- \varepsilon^2 \Delta u + Vu = u^p, \quad {\rm in} \quad \mathbb{R}^N}\), where \({\varepsilon > 0}\) is a real parameter, \({\frac{N}{N-2} < p < \frac{N+2}{N-2}}\) and V is a nonnegative potential. Using purely variational techniques, we find solutions which concentrate at local maxima of the potential V without any restriction on the potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations with bounded potentials. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 7(3), 155–160 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti A., Felli V., Malchiodi A.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7(1), 117–144 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problems on \({\mathbb{R}^n}\). In: Progress in Mathematics, vol. 240. Birkhäuser, Boston (2006)

  5. Ambrosetti A., Malchiodi A., Ruiz D.: Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Anal. Math. 98, 317–348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ba N., Deng Y., Peng S.: Multi-peak bound states for Schrödinger equations with compactly supported or unbounded potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(5), 1205–1226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bidaut-Véron M.-F.: Local and global behavior of solutions of quasilinear equations of Emden-Fowler type. Arch. Ration. Mech. Anal. 107(4), 293–324 (1989)

    Article  MATH  Google Scholar 

  8. Bonheure D., Di Cosmo J., Van Schaftingen J.: Nonlinear Schrödinger equation with unbounded or vanishing potentials: solutions concentrating on lower dimensional spheres. J. Differ. Equ. 252(1), 941–968 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonheure D., Van Schaftingen J.: Nonlinear Schrödinger equations with potentials vanishing at infinity. C. R. Math. Acad. Sci. Paris 342(12), 903–908 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonheure D., Van Schaftingen J.: Bound state solutions for a class of nonlinear Schrödinger equations. Rev. Mat. Iberoamericana 24, 297–351 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. del Pino M., Felmer P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. 4(2), 121–137 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. del Pino M., Felmer P.: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149, 245–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. del Pino M., Felmer P.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(2), 127–149 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. del Pino M., Felmer P.: Semi-classical states of nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324, 1–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fei M., Yin H.: Existence and concentration of bound states of nonlinear Schrödinger equations with compactly supported and competing potentials. Pacific J. Math. 244(2), 261–296 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kwong M.-K.: Uniqueness of positive solutions of \({\Delta u - u + u^p = 0}\) in \({\mathbb{R}^n}\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984). Part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

  19. Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems. In: Applied Mathematical Sciences, vol. 74. Springer, New York (1989)

  20. Moroz V., Van Schaftingen J.: Existence and concentration for nonlinear Schrödinger equations with fast decaying potentials. C. R. Math. Acad. Sci. Paris 347(15-16), 921–926 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moroz V., Van Schaftingen J.: Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials. Calc. Var. 37(1), 1–27 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oh Y.-G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V) a . Commun. Partial Differ. Equ. 13(12), 1499–1519 (1988)

    Article  MATH  Google Scholar 

  23. Oh Y.-G.: Correction to: “Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V) a ”. Commun. Partial Differ. Equ. 14(6), 833–834 (1989)

    Article  MATH  Google Scholar 

  24. Oh Y.-G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131(2), 223–253 (1990)

    Article  MATH  Google Scholar 

  25. Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston, MA (1996)

  27. Wang X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153(2), 229–244 (1993)

    Article  MATH  Google Scholar 

  28. Yin H., Zhang P.: Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity. J Differ. Equ. 247(2), 618–647 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Van Schaftingen.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Cosmo, J., Van Schaftingen, J. Stationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maxima. Calc. Var. 47, 243–271 (2013). https://doi.org/10.1007/s00526-012-0518-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0518-z

Keywords

Mathematics Subject Classification

Navigation